• Title/Summary/Keyword: New energy industry

Search Result 754, Processing Time 0.03 seconds

POSCO's Research and Development works on rare earth reduced NdFeB magnets production process

  • Yuh, Junhan
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.12a
    • /
    • pp.90-90
    • /
    • 2013
  • Since discovery, NdFeB permanent magnet has replaced application of the conventional magnets rapidly because of its superior physical and mechanical properties. With increasing consumption of power combined with energy resource depletion, energy efficiency is becoming more and more inportant. According to recent reports, almost almost half of the electric power is consumed by motor, and NdFeB magnets which are the core component of the motor play a key role on improving energy efficiency of the devices. In parallel with finding alternatives energy resources, research works improving energy efficiecy have been conducted world wide. Althogh NdFeB magnets usage have been expanded to various applications, key materials such as Nd and Dy, resouces lean heavily on specific area, China. Magnetic industry revently experienced skyrocketing price fluctuatioin of rare earth at around 2008. Chineses government's regulations worsened the situation and arose a necessity to develop methods to minimize rare earth use. In this presentation, POSCO's recent research works on rare earth reduction is presented including novel powder alloying method using nitrate precursors. Also, future R&D plans for rare earth free magnets is briefly introduced as well.

  • PDF

On Renewable Energy Technology Valuation Using System Dynamics and Compound Real Options (시스템다이내믹스와 복합 리얼옵션 기반 신·재생에너지 기술가치평가)

  • Jeon, Chanwoong;Shin, Juneseuk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.2
    • /
    • pp.195-204
    • /
    • 2014
  • The transition from fossil to renewable energy is inevitable due to fossil depletion. So, Renewable energy is very important for energy security and economic growth although it's R&D is long-term and high risky project. We propose new valuation method which combined system dynamics and compound real option method for long-term and high risk projects such as renewable energy. This method can show dynamic valuation results for the complex causal interaction and be easy for Monte-Carlo simulation to estimate volatility. And it can reflect the value of flexible decision for uncertainty. We applied the empirical analysis for Korea's photovoltaic industry by using this method. As results by empirical analysis, photovoltaic's R&D has high valuation using this method compared by traditional valuation methods such as DCF.

Effects of Catalyst Dispersion for Reaction Energy Control on Eco-AZ91 MgH2 (Eco-AZ91 MgH2의 반응열 제어에 미치는 촉매 분산 효과)

  • SOOSUN LEE;SONG SEOK;TAE-WHAN HONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.631-640
    • /
    • 2023
  • This study selected Eco-AZ91 MgH2, which shows high enthalpy as a material for this purpose, as the basic material, and analyzed the change in characteristics by synthesizing TiNi as a catalyst to control the thermodynamic behavior of MgH2. In addition, the catalyst dispersion technology using graphene oxide (GO) was studied to improve the high-temperature aggregation phenomenon of Ni catalyst and to secure a source technology that can properly disperse the catalyst. XRD, SEM, and BET analysis were conducted to analyze the metallurgical properties of the material, and TGA and DSC analysis were conducted to analyze the dehydrogenation temperature and calorific value, and the correlation between MgH2, TiNi catalyst, and GO reforming catalyst was analyzed. As a result, the MgH2-5 wt% TiNi at GO composite could lower the dehydrogenation temperature to 478-492 K due to the reduction of the catalyst aggregation phenomenon and the increase in the reaction specific surface area, and an experimental result for the catalyst dispersion technology by GO could be ensured.

A study on the corporate culture of BYD

  • Shang, Xian-Fa;Choi, Myeong-Cheol
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.135-140
    • /
    • 2020
  • The main battlefield of 'made in China 2025' proposed by the Chinese government is the deep integration of industrialization and informatization, among which intelligent manufacturing and new energy vehicles are the key links. New energy vehicle refers to the use of unconventional automotive fuel as a power source (or use conventional automotive fuel, the use of new vehicle-mounted power plant), integrated vehicle power control and driving aspects of advanced technology, the formation of advanced technical principles, with new technology and the structure of the vehicle. BYD's success in the battery, I T and automobile industries has attracted the attention of the industry, making it a shining new star in the Chinese business community. BYD 's innovation, diversification and corporate culture construction have certain enlightenment to the development of China's small and medium-sized enterprises. Therefore, by looking at the Chinese network literature, about BYD's research mainly focused on the development strategy, corporate finance, corporate performance, and corporate marketing, etc. This paper will take BYD as the research object and focus on corporate culture. Through literature analysis and qualitative analysis, it will summarize and further analyze the unique corporate culture of BYD, its important role, and provide relevant theoretical references for the construction and development of corporate culture in other industries.

A Study on Policy Trends and Location Pattern Changes in Smart Green-Related Industries (스마트그린 관련 산업의 정책동향과 입지패턴 변화 연구)

  • Young Sun Lee;Sun Bae Kim
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.38-52
    • /
    • 2024
  • Digital transformation industry contributes to the improvement of productivity in overall industrial production, the smart green industry for carbon neutrality and sustainable growth is growing as a future industry. The purpose of this paper is to explore the status and role of the industry in the future industry innovation ecosystem through the analysis of the growth drivers and location pattern changes of the smart green industry. The industry is on the rise in both metropolitan and non-metropolitan areas, and the growth of the industry can be seen in non-metropolitan and non-urban areas. In particular, due to the smart green industrial complex pilot project, the creation of Gwangju Jeonnam Innovation City, and the promotion of new and renewable energy policies, the emergence of core aggregation areas (HH type) in the coastal areas of Honam and Chungcheongnam-do, and the formation of isolated centers (HL type) in the Gyeongsang region, new and renewable energy production companies are being accumulated in non-metropolitan areas. Therefore, the smart green industry is expected to promote the formation of various specialized spokes in non-urban areas in the future industrial innovation ecosystem that forms a multipolar hub-spoke network structure, where policy factors are the triggers for growth.

Effect of Electroplating Parameters on Oxygen Evolution Reaction Characteristics of Raney Ni-Zn-Fe Electrode (Raney Ni-Zn-Fe 전극의 산소발생 반응 특성에 미치는 도금변수의 영향)

  • CHAE, JAEBYEONG;KIM, JONGWON;BAE, KIKWANG;PARK, CHUSIK;JEONG, SEONGUK;JUNG, KWANGJIN;KIM, YOUNGHO;KANG, KYOUNGSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • The intermittent characteristics of renewable energy complicates the process of balancing supply with demand. Electrolysis technology can provide flexibility to grid management by converting electricity to hydrogen. Alkaline electrolysis has been recognized as established technology and utilized in industry for over 100 years. However, high overpotential of oxygen evolution reaction in alkaline water electrolysis reduces the overall efficiency and therefore requires the development of anode catalyst. In this study, Raney Ni-Zn-Fe electrode was prepared by electroplating and the electrode characteristics was studied by varying electroplating parameters like electrodeposition time, current density and substrate. The prepared Raney Ni-Zn-Fe electrode was electrochemically evaluated using linear sweep voltammetry. Physical and chemical analysis were conducted by scanning electron microscope, energy dispersive spectrometer, and X-ray diffraction. The plating time did not changed the morphology and composition of the electrode surface and showed a little effect on overpotential reduction. As the plating current density increased, Fe content on the surface increased and cauliflower-like structure appeared on the electrode surface. In particular, the overpotential of the electrode, which was prepared at the plating current density of 320 mA/㎠, has showed the lowest value of 268 mV at 50 mA/㎠. There was no distinguishable overpotential difference between the type of substrate for the electrodes prepared at 80 mA/㎠.

Direction and Strategy of PV R&D Technical Programs of Korea for the Next Decade (한국 태양광 산업 정착을 위한 핵심 기술 확보 전략 및 향후 10년 전망)

  • Lim, Hee-Jin;Noh, Hyun-Woo;Lim, Young-Suk;Kim, Dong-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.406-407
    • /
    • 2008
  • 지난 8년간 세계 태양광 시장은 연평균 40% 이상 성장하여 2006년 200억 불 규모로 초고속성장을 지속하고 있으며 2010년 1,300억 불, 2012년에는 2,000억 불에 이를 것으로 전망되며, 2015년에는 메모리반도체 시장규모를 추월할 것으로 예상된다. 국내 태양광 산업은2004년 이후 적극적인 기술개발 및 보급정책의 결과 2008년 현재 산업 기반이 조성되었으며 수출산업으로 전환단계에 있다. 태양광 분야는 반도체/디스플레이 시장과 같이 기술력과 자금력을 보유한 소수의 기업이 이익을 독점하는 구조로서 2007년 상위 5개국이 전체 생산량의 85%를 차지하는 실정이다. 이것은 우리가 조기에 기술 및 규모를 확보하지 못할 경우 추후 경쟁에서 매우 불리함을 인식하고 실리콘 소재 기술력의 국산화 및 박막형 태양전지의 양산화 조성 등 세부기술의 분류를 나열하고 2-3년 이내에 상용화 가능한 요소기술, 4-5년 이내에 양산구동력을 구축할 수 있는 핵심기술, 10년 이내에 글로벌경쟁력을 갖출 수 있는 원천기술력을 발굴하고 정부-기업-연구소(대학)가 공동의 지원책을 강구하여 융합된 미래 글로벌 기술력을 확보한 신성장 동력원으로 가치창출 요소를 발굴할 필요성이 있다.

  • PDF

Electricity Market Design for the Incorporation of Various Demand-Side Resources in the Jeju Smart Grid Test-bed

  • Park, Man-Guen;Cho, Seong-Bin;Chung, Koo-Hyung;Moon, Kyeong-Seob;Roh, Jae-Hyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1851-1863
    • /
    • 2014
  • Many countries are increasing their investments in smart grid technology to enhance energy efficiency, address climate change, and trigger a green energy revolution. In addition to these goals, Korea also seeks to promote national competitiveness, prepare for the growth of the renewable energy industry, and export industrialization through its strategic promotion of the smart grid. Given its inherent representativeness for Korean implementation of the smart grid and its growth potential, Jeju Island was selected by the Korean government as the site for smart grid testing in June 2009. This paper presents a new design for the electricity market and an operational scheme for testing Smart Electricity Services in the Jeju smart grid demonstration project. The Jeju smart grid test-bed electricity market is constructed on the basis of day-ahead and real-time markets to provide two-way electricity transaction environments. The experience of the test-bed market operation shows that the competitive electricity market can facilitate the smart grid deployment in Korea by allowing various demand side resources to be active market players.

Study on Reduction of Curtailment of Renewable Generation based on Green Hydrogen Sector Coupling (그린수소 기반 섹터 커플링 통한 재생에너지 출력제한 경감효과 연구)

  • Jeon, Wooyoung;Kim, Jin-yi;Lee, Seongwoo
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.50-59
    • /
    • 2022
  • The Korean government announced the "1st Basic Plan for the Transition to Hydrogen Economy" in 2021 and declared the establishment of a hydrogen industry ecosystem by 2040. To build a low-carbon power system, resources that can efficiently accommodate renewable energy are required, and green hydrogen is considered a potential solution. This study analyzed the economic feasibility of green hydrogen-based sector coupling to reduce curtailment of renewable generation in the Jeju power system by 2025 under the scenario of with or without HVDC#3. The result showed that HVDC#3 significantly reduced the frequency of curtailment from 16.1% to 3.0%. In addition, green hydrogen-based sector coupling was an economically feasible option as result showed an IRR of 4.86% when HVDC#3 was connected and 11.45% when it was not under the condition of achieving 50% curtailment reduction. This study shows that the higher the level of renewable energy deployment, the more delayed the HVDC connection between Jeju and the main land, and the lower the SMP, the more economically feasible the green hydrogen-based sector coupling is. Furthermore, this study suggests that the policy goal of completely reducing curtailment is not economically efficient.

Technique for the Prevention of Inrush Current in a TCC Reactive Power Compensator

  • Yang, Ji-Hoon;Song, Sung-Geun;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.149-158
    • /
    • 2018
  • With the propagation and spread of the new regeneration energy and increase in electricity demand, power systems tend to be decentralized, and accordingly, the use of a power system stabilizer tends to expand for the stabilization of the distribution system. Thus, typical power system stabilizer, Static Var Compensator (SVC) is developed on a variety of topologies. In addition, the trend of technology leads from SVC to Static Synchronous Compensator(STATCOM) technology development. Recently, to overcome STATCOM's conversion losses and economic disadvantages, studies of a hybrid method using STATCOM and SVC in parallel have actively been conducted. This study proposes a new Soft-Step Switching method to limit inrush current problematic in Thyristor Controlled Capacitor (TCC) method in SVC function. In addition, to reduce Statcom's capacity, groups of reactive power compensation reactor and condenser for SVC were designed.