• Title/Summary/Keyword: New energy industry

Search Result 756, Processing Time 0.028 seconds

Optimization and Evaluation of Organic Acid Recovery from Kraft Black Liquor Using Liquid-Liquid Extraction

  • Kwon, Hee Sun;Um, Byung Hwan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.753-761
    • /
    • 2016
  • Liquid-liquid extraction (LLE) can be used for the recovery of acetic acid from black liquor prior to bioethanol fermentation. Recovery of value-added chemicals such as acetic-, formic- and lactic acid using LLE from Kraft black liquor was studied. Acetic acid and formic acid have been reported to be strong inhibitors in fermentation. The study elucidates the effect of three reaction parameters: pH (0.5~3.5), temperature ($25{\sim}65^{\circ}C$), and reaction time (24~48 min). Extraction performance using tri-n-octylphosphine oxide as the extractant was evaluated. The maximum acetic acid concentration achieved from hydrolyzates was 69.87% at $25^{\circ}C$, pH= 0.5, and 36 min. Factorial design was used to study the effects of pH, temperature, and reaction time on the maximum inhibitor extraction yield after LLE. The maximum potential extraction yield of acetic acid was 70.4% at $25.8^{\circ}C$, pH=0.6 and 37.2 min residence time.

A SD approach to the Efficiency Improvement of Electric Power Industry in Korea -Focused on the Nuclear Industry (국내 전력산업의 효율성 제고모형에 대한 SD 모형 연구 - 원자력산업을 중심으로)

  • Heo, Hoon;Lee, Myung-Ho
    • Korean System Dynamics Review
    • /
    • v.4 no.2
    • /
    • pp.153-171
    • /
    • 2003
  • In this study, we tried to build a model which can deal with the efficient and effective operation of electric power industry, especially focused on the nuclear industry. Here, SD(system Dynamics) approach is used to visualize the underlying phenomenon of the nuclear power industry. SD is a methodology for studying and managing complex feedback systems, such as one finds in business and other social systems, The span of SD applications has grown extensively and now encompasses work in corporate planning and policy design, public management and policy, biological and medical modeling, energy and the environment. Recently, according to the report from KEPCO(Korea Electric Power Corporation), they are considering delaying a new power plant construction. It may be based upon business fluctuation downsized from Korean economic crisis in 1997 and freezing of construction funds due to unstable foreign exchange rate. At this point, we need desperately a kind of strategic model that would contribute to cope with the current business situation, energy generation, Production, and resulting Pollution. Specifically, this model, using SD approach, starts with the detailed drawing of influence diagram, which describes those relevant key points on nuclear power generation systems in electric power industry of Korea. These include such (actors as the operation of nuclear industry and parameters related to the decision making for business policy. Based upon the above-mentioned influence diagram drawn, we developed SD simulation model to evaluate and analyze strategic management of KBPCO. Based on our analysis, we could demonstrate how simulation model can be applied to the real electric power generation in Korea.

  • PDF

A SD approach to the Efficiency Improvement of Electric Power Industry in Korea: Focused on the Nuclear Industry (시스템 다이내믹스(SD)에 의한 국내 전력산업의 효율성 제고에 관한 연구: 원자력산업을 중심으로)

  • Lee, Myoung-Ho;Lee, Hee-Sang;Jang, In-Sung;Choi, Bong-Sik;Huh, Hoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.2
    • /
    • pp.99-109
    • /
    • 2001
  • In this study, we tried to build a model which can deal with the efficient and effective operation of electric power industry, especially focused on the nuclear industry. Here, SD (System Dynamics) approach is used to visualize the underlying phenomenon of the nuclear power industry. SD is a methodology for studying and managing complex feedback systems, such as one finds in business and other social systems. The spend of SD applications has grown extensively and now encompasses work in corporate planning and policy design, public management and policy, biological and medical modeling, energy and the environment. Recently, according to the report from KEPCO (Korea Electric Power Corporation), they are considering delaying a new power plant construction. It may be based upon business fluctuation downsized from Korean economic crisis in 1997 and freezing of construction funds due to unstable foreign exchange rate. At this point, we need disparately a kind of strategic model that would contribute to cope with the current business situation, energy generation, production, and resulting pollution. Specifically, this model, using SD approach, starts with the detailed drawing of influence diagram, which describes those relevant key points on nuclear power generation systems in electric power industry of Korea. These include such factors as the operation of nuclear industry and parameters related to the decision making for business policy. Based upon the above-mentioned influence diagram drawn, we developed SD simulation model to evaluate and analyze strategic management of KEPCO. Based on our analysis, we could demonstrate how simulation model can be applied to the real electric power generation in Korea.

  • PDF

Hydrogen Enriched Gas Turbine: Core Technologies and R&D Trend (수소혼소용 가스터빈의 요소기술 및 국내외 기술개발 동향)

  • JOO, YONGJIN;KIM, MIYEONG;PARK, JUNGKEUK;PARK, SEIK;SHIN, JUGON
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.4
    • /
    • pp.351-362
    • /
    • 2020
  • Recently, renewable power is rapidly increasing globally due to extensive effort to mitigate climate change and conventional power generation industry faces new challenges. The gas turbine technology has potentials to expand its role in future power generation based on the intrinsic characteristics such as fuel diversity and fast load following ability. Hydrogen is one of the most promising fuel in terms of reducing emissions and storing variable renewable energy and replacing hydrocarbon fuel with hydrogen has become very popular. Therefore, this paper presents the core technologies to combust hydrogen added fuel efficiently in gas turbines and the analysis of domestic and international R&D trends.

Establishment of Model for the Human Resource Development in RI-Biomics Field (RI-Biomics 분야 인력양성 모델 정립)

  • Yeom, Yu-sun;Shin, Woo-Ho;Hwang, Young-Muk;Park, Tai-Jin;Park, Sang-Hyun
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.209-219
    • /
    • 2013
  • RI-Biomics field comes into the limelight as a new fusion radiation technology. These rapid development of RI-Biomics cause the necessity of establishment of a new methodical education program model for consistent training of professional manpower in RI-ADME, Biomics field. But domestic current status is not satisfied to training human resource development in RI-Biomics. Actually domestic educational organization related to RI-Biomics just run educational programs oriented basic theory, so practical and fusion education are not existed nowadays for preliminary RI-Biomics expert. Therefore we established a new education program model for educate of the expert in RI-Biomics field to overcome current problem about the route of knowledge that has more monotonous and concentrated tendency and non-professional education. To improve universality and practicality, we conduct education-training model survey about domestic and foreign country. This new human resource development model will contribute to fostering new expert in RI-Biomics field.

Analysis of Energy Efficiency Design Index and Onboard Power Capacity for New Building Ships (신조선의 에너지효율설계지수와 선상 동력용량에 대한 분석)

  • Lee, D.C.;Millar Jr, Melchor M.;Nam, J.G.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.843-851
    • /
    • 2009
  • Much work has already been done to control and regulate the worldwide problems caused by climate change, particularly the issues on greenhouse gas (GHG) emissions. Carbon dioxide ($CO_2$), having the highest form of concentration among GHGs composed around 1.0 billion tons of emission, and comprises about 98% of the total emissions from the shipping industry. Korean trade mainly rely on the sea transportation. Korean ship tonnages that was brought about by shipbuilders all over the country, continues to grow annually due to the prevailing demands on goods or material supplies and depicting only a small part of the global maritime activity. Nowadays, new build ships coming from the Korean Shipbuilders are being optimized by hull, structure and appendages design, The operational capability of the propulsion and auxiliary machineries in its maximum capacity to achieve the highest possible efficiencies for energy and onboard power use to mitigate $CO_2$ emissions are continually being done through the help of research and development. In this paper, the energy efficiency design index and anboard power capacity of Korean new build ships have been analyzed with response to data collected by ship types, and its respective fuel consumption in relation to $CO_2$ emission results. In response to climate change convention outcome proposals, the best way for the new build ships to become energy efficient is by lowering its operational speed thru adopting the state of the art diesel propulsion engines, patronizing the best sailing practice to lower the transportation cost on the different sea trade routes also helps in $CO_2$ mitigation.

A Study on Measures to Boost the Development of Distributed Generation through Analysis and assessment of the District Electricity Power Business Environment (구역전기사업의 환경분석을 평가를 통한 분산형전원개발 촉진방안에 관한 연구)

  • Kim, Soo-Chul;Yoo, Wang-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1304-1312
    • /
    • 2009
  • The purpose of this study is to build promotive measures and to develop alternative policies of DG(Distributed Generation) by finding and analysing effects of four business environment factors related to DEPB(District Electricity Power Business) on boosting DG. In this study, four business environment factors, which are the electric power industry restructuring, electricity tariff and pricing structure, regulations for DEPB, and conflicts of stake-holding groups, are considered as independent variables. And promotion factors of DG including small CHP(Combined Heat and Power) generation, which is outcome of DEPB, are considered as dependent variables. But dependent variables including booming of new renewable energy generation due to green energy pricing incentives, the electric power industry restructuring, and electricity tariff and pricing policies were separatively considered. In this study, some policies were proposed reflecting research results of empirical demonstrative analysis, previous studies, overseas cases, etc.

Agent-Based Modeling for Studying the Impact of Capacity Mechanisms on Generation Expansion in Liberalized Electricity Market

  • Dahlan, N.Y.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1460-1470
    • /
    • 2015
  • This paper presents an approach to solve the long-term generation expansion planning problem of the restructured electricity industry using an agent-based environment. The proposed model simulates the generation investment decisions taken by a particular agent (i.e. a generating company) in a market environment taking into account its competitors’ strategic investment. The investment decision of a particular company is modeled taking into account that such company has imperfect foresight on the future system development hence electricity prices. The delay in the construction of new plants is also explicitly modeled, in order to compute accurately the yearly revenues of each agent. On top of a conventional energy market, several capacity incentive mechanisms including capacity payment and capacity market are simulated, so as to assess their impact on the investment promotion for generation expansion. Results provide insight on the investment cycles as well as dynamic system behavior of long-term generation expansion planning in a competitive electricity industry.

Mini Review: A Current Status of Microwave Susceptor Packaging (전자레인지 서셉터 패키징 기술개발 현황)

  • Lee, Wooseok;Choi, Jungwook;Song, Hyuk-Hwan;Ko, Seonghyuk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.26 no.3
    • /
    • pp.133-138
    • /
    • 2020
  • As HMR (home meal replacement) food market grows rapidly, a new packaging with more HMR specialized functions is highly required to promote consumers' convenience. A susceptor is defined as a material generating heat by absorbing electromagnetic energy such typically as radiofrequency or microwave radiation. In microwave cooking, susceptors are made of conductive metal thin film deposited on paper or plastic sheet and have generally been used to help crispen or brown foods by converting microwave energy into heat. This mini review article deals with current status of microwave susceptor packaging including commercial products, technical theory, types of susceptor and a test method for heating performance.

An Experimental Study on Oil Combustion Technology with High Temperature Preheated Air (고온공기이용 오일 연소기술)

  • 김원배;양제복
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.17-23
    • /
    • 2002
  • The objective of this study is to develop a new oil combustion technology concerning industrial furnaces and kilns, not only to save energy but also to reduce environmental emissions. Of many kinds of such technologies we chose the high temperature air combustion technology which was initiated by the British steel company in '80s and developed further by the American burner company "North American". In this study it was carried out to test regenerative burner experimentally and to have an applicability to industry. From the variation of configuration of gas nozzle and hot test on the temperature distribution and NOx, it was found out that the reduction of NOx was due to the effect of internal gas recirculation, which will be caused by air emitting velocity from burner nozzle.

  • PDF