• Title/Summary/Keyword: New drug development

Search Result 668, Processing Time 0.03 seconds

Analysis of Research Trends Related to drug Repositioning Based on Machine Learning (머신러닝 기반의 신약 재창출 관련 연구 동향 분석)

  • So Yeon Yoo;Gyoo Gun Lim
    • Information Systems Review
    • /
    • v.24 no.1
    • /
    • pp.21-37
    • /
    • 2022
  • Drug repositioning, one of the methods of developing new drugs, is a useful way to discover new indications by allowing drugs that have already been approved for use in people to be used for other purposes. Recently, with the development of machine learning technology, the case of analyzing vast amounts of biological information and using it to develop new drugs is increasing. The use of machine learning technology to drug repositioning will help quickly find effective treatments. Currently, the world is having a difficult time due to a new disease caused by coronavirus (COVID-19), a severe acute respiratory syndrome. Drug repositioning that repurposes drugsthat have already been clinically approved could be an alternative to therapeutics to treat COVID-19 patients. This study intends to examine research trends in the field of drug repositioning using machine learning techniques. In Pub Med, a total of 4,821 papers were collected with the keyword 'Drug Repositioning'using the web scraping technique. After data preprocessing, frequency analysis, LDA-based topic modeling, random forest classification analysis, and prediction performance evaluation were performed on 4,419 papers. Associated words were analyzed based on the Word2vec model, and after reducing the PCA dimension, K-Means clustered to generate labels, and then the structured organization of the literature was visualized using the t-SNE algorithm. Hierarchical clustering was applied to the LDA results and visualized as a heat map. This study identified the research topics related to drug repositioning, and presented a method to derive and visualize meaningful topics from a large amount of literature using a machine learning algorithm. It is expected that it will help to be used as basic data for establishing research or development strategies in the field of drug repositioning in the future.

Survey and Classification of Pharmaceutical Excipients (국내 의약품 첨가제 정보체계 연구)

  • Park, In-Sook;Park, Sang-Aeh;Kim, Eun-Jung;Park, Hyo-Min;Hong, Chong-Hui;Jnng, Joo-Yeon;Kim, Ho-Jung;Lee, Ji-Hyun;Han, Eui-Sik;Kang, Shin-Jung;Lee, Sun-Hee
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.4
    • /
    • pp.239-243
    • /
    • 2006
  • Due to the development of new dosage forms and the improvement or pharmaceutics, the pharmaceutical excipients have become more specified and diverse, and the reclassification on them became necessary. Also with the increasing interests on the kinds and usage amount, related provisions, and evaluation of the pharmaceutical excipients, the systemic and effective control of them was in its demand. Therefore, in this research, we provided the following information on excipients: the type, amount and specification. In order to provide the information, we investigated, analysed and summarized the excipients that are approved by KFDA and published $\ulcorner$Handbook of Pharmaceutical Excipients$\lrcorner$). This handbook is expected to be used as a reference in the development of the pharmaceutics and evaluation in them. As the importance of excipients in pharmaceutics are increasing, IPEC which consist of IPEC-America, IPEC-Europe and JPEC, PDG and ICH have tried to make an international harmonization on excipient. This current status was not an exception to Korea, therefore, the result of this research is expected to make a progress in the evaluation on the excipients to an advanced level.

Experimental model and novel therapeutic targets for non-alcoholic fatty liver disease development

  • Yujin Jin;Kyung-Sun Heo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.299-310
    • /
    • 2023
  • Non-alcoholic fatty liver disease (NAFLD) is a complex disorder characterized by the accumulation of fat in the liver in the absence of excessive alcohol consumption. It is one of the most common liver diseases worldwide, affecting approximately 25% of the global population. It is closely associated with obesity, type 2 diabetes, and metabolic syndrome. Moreover, NAFLD can progress to non-alcoholic steatohepatitis, which can cause liver cirrhosis, liver failure, and hepatocellular carcinoma. Currently, there are no approved drugs for the treatment of NAFLD. Therefore, the development of effective drugs is essential for NAFLD treatment. In this article, we discuss the experimental models and novel therapeutic targets for NAFLD. Additionally, we propose new strategies for the development of drugs for NAFLD.

Legal Issues on the Development of New Drug: An Analysis of COVID-19 Vaccine (신약개발의 법적쟁점 - 코로나바이러스 감염증 백신을 중심으로 -)

  • Yi, Hyunjoo;Jeong, Jonggu;Kim, Hyein
    • The Korean Society of Law and Medicine
    • /
    • v.21 no.3
    • /
    • pp.37-75
    • /
    • 2020
  • There have been affluent studies on the development of new drugs and these efforts have been crystallized into a separate field of pharmacology. Yet, a normative analysis pertinent to the development of new medicine is still in a dire need, except for studies regarding medical ethics. This piece of work aims to contemplate on the legal issues concerning the development of new drug, encompassing each and every stage of the development. In order to maximize the practicability of the research method adopted as aforementioned, this work strives to analyze the developing process of COVID-19 vaccine. The first step would be to introduce the developmental stages of inventing a new drug, especially that of a COVID-19 vaccine. After then, legal issues related to each developmental stage would be discussed. Henceforth, the legal analysis would contribute to predicting upcoming legal complexities and will be able to offer normative implications for the invention of new medicines.

Interpretation of Animal Dose and Human Equivalent Dose for Drug Development

  • Shin, Jang-Woo;Seol, In-Chan;Son, Chang-Gue
    • The Journal of Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.1-7
    • /
    • 2010
  • Objectives: To introduce to TKM scientific dose conversion methods of human to animal or animal to human for new drug investigations. Methods: We searched guidelines of the FDA and KFDA, and compared them with references for drug-dose conversion from various databases such as PubMed and Google. Then, we analyzed the potential issues and problems related to dose conversion in safety documentation of new herbal drugs based on our experiences during Investigational New Drug (IND) applications of TKM. Results: Dose conversion from human to animal or animal to human must be appropriately translated during new drug development. From time to time, investigators have some difficulty in determining the appropriate dose, because of misunderstandings of dose conversion, especially when they estimate starting dose in clinical or animal studies to investigate efficacy, toxicology and mechanisms. Therefore, education of appropriate dose calculation is crucial for investigators. The animal dose should not be extrapolated to humans by a simple conversion method based only on body weight, because many studies suggest the normalization method is based mainly on body surface area (BSA). In general, the body surface area seems to have good correlation among species with several parameters including oxygen utilization, caloric expenditure, basal metabolism, blood volume and circulating plasma protein. Likewise, a safety factor should be taken into consideration when deciding high dose in animal toxicology study. Conclusion: Herein, we explain the significance of dose conversion based on body surface area and starting dose estimation for clinical trials with safety factor.

Biomarkers and Surrogate Endpoints for Development of New Drug on Pulmonary Disease (폐질환 치료제의 효율적인 신약개발을 위한 생체표지자 및 대리결과 변수)

  • Seo, Jeong-Won;Lee, Byung-Yo;Chae, Jung-Woo;Son, Chu-Young;Kang, Won-Ku;Chae, Han-Jung;Kwon, Kwang-Il
    • YAKHAK HOEJI
    • /
    • v.54 no.2
    • /
    • pp.75-90
    • /
    • 2010
  • Biomarkers are likely to be important in the study of various pulmonary diseases for many reasons. Research efforts in developing biomarkers and surrogate endpoints of lung diseases have resulted in the identification of new risk factors and novel drug targets, as well as the establishment of treatment guidelines. Government agencies, academic research institutions, diagnostic industries, and pharmaceutical companies all recognize the importance of biomarkers in new drug development and advancing therapies to improve public health. In drug development, biomarkers are used to evaluate early signals of efficacy and safety, to select dose, and to identify the target population. Identification of suitable end points not only would help investigators design appropriate clinical trials but would assist clinicians in caring for this patient population. Though the area of pulmonology has received much attention in the past decades, it still lags behind with regard to the development of biomarkers, particularly those of health effects and susceptibility. This review critically summarized several biomarker researches such as Evaluation of COPD Longitudinally to Identify Predictive Surrogate End-points (ECLIPSE) study with objectives of identifying the parameters that predict disease progression of COPD, as well as biomarkers that may serve as surrogate end-points.

Development and Application of Detection Method for Aphanizomenon flos-aquae not Usable as a Food Materials in Korea (식품 중 사용금지 원료인 Aphanizomenon flos-aquae 검출법 개발 및 응용)

  • Park, Yong-Chjun;Shin, Seung-Jung;Lee, Ho-Yeon;Kim, Yong-Sang;Kim, Mi-Ra;Lee, Sang-Jae;Lee, Hwa-Jung
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.2
    • /
    • pp.188-193
    • /
    • 2013
  • Anatoxin-a, saxitoxin and neosaxitoxin are produced by Aphanizomenon flos-aquae that is a sort of the cyanobacteria phylum. Therefore, it is not permitted for food materials in Korea. Traditionally, the classification of cyanobacteria has been based on morphological characters such as trichome width, cell size, division planes, shape, and the presence of character such as gas vacuole. But, some diagnostic features, such as gas vacuole or akinetes, can show variation with different environmental or growth conditions and even be lost during cultivation. Therefore, we developed detection method for functional foods containing Aph. flos-aquae by PCR. To design the primer, 16S rRNA region of Aph. flos-aquae, Spirulina laxissima, and Spirulina spp. registered in the GeneBank (www.ncbi.nlm.nih.gov) have been used and for comparative analysis, BioEdit ver. 7.0.9.0. was used. As a result, we was design AFA-F1/AFA-R1 (363 bp) primer for the differentiation Aph. flos-aquae from chlorella, spirulina, green tea, and spinach. Also, it could be distinguished chlorella and spirulina products those are made to contain 1% Aph. flos-aquae.

Development of a New Approach to Determine the Potency of Bacille Calmette-Guérin Vaccines Using Flow Cytometry

  • Gweon, Eunjeong;Choi, Chanwoong;Kim, Jaeok;Kim, Byungkuk;Kang, Hyunkyung;Park, Taejun;Ban, Sangja;Bae, Minseok;Park, Sangjin;Jeong, Jayoung
    • Osong Public Health and Research Perspectives
    • /
    • v.8 no.6
    • /
    • pp.389-396
    • /
    • 2017
  • Objectives: To circumvent the limitations of the current golden standard method, colony-forming unit (CFU) assay, for viability of Bacille Calmette-$Gu{\acute{e}}rin$ (BCG) vaccines, we developed a new method to rapidly and accurately determine the potency of BCG vaccines. Methods: Based on flow cytometry (FACS) and fluorescein diacetate (FDA) as the most appropriate fluorescent staining reagent, 17 lots of BCG vaccines for percutaneous administration and 5 lots of BCG vaccines for intradermal administration were analyzed in this study. The percentage of viable cells measured by flow cytometry along with the total number of organisms in BCG vaccines, as determined on a cell counter, was used to quantify the number of viable cells. Results: Pearson correlation coefficients of FACS and CFU assays for percutaneous and intradermal BCG vaccines were 0.6962 and 0.7428, respectively, indicating a high correlation. The coefficient of variation value of the FACS assay was less than 7%, which was 11 times lower than that of the CFU assay. Conclusion: This study contributes to the evaluation of new potency test method for FACS-based determination of viable cells in BCG vaccines. Accordingly, quality control of BCG vaccines can be significantly improved.

De Novo Drug Design Using Self-Attention Based Variational Autoencoder (Self-Attention 기반의 변분 오토인코더를 활용한 신약 디자인)

  • Piao, Shengmin;Choi, Jonghwan;Seo, Sangmin;Kim, Kyeonghun;Park, Sanghyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • De novo drug design is the process of developing new drugs that can interact with biological targets such as protein receptors. Traditional process of de novo drug design consists of drug candidate discovery and drug development, but it requires a long time of more than 10 years to develop a new drug. Deep learning-based methods are being studied to shorten this period and efficiently find chemical compounds for new drug candidates. Many existing deep learning-based drug design models utilize recurrent neural networks to generate a chemical entity represented by SMILES strings, but due to the disadvantages of the recurrent networks, such as slow training speed and poor understanding of complex molecular formula rules, there is room for improvement. To overcome these shortcomings, we propose a deep learning model for SMILES string generation using variational autoencoders with self-attention mechanism. Our proposed model decreased the training time by 1/26 compared to the latest drug design model, as well as generated valid SMILES more effectively.

Clinical development of photodynamic agents and therapeutic applications

  • Baskaran, Rengarajan;Lee, Junghan;Yang, Su-Geun
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.303-310
    • /
    • 2018
  • Background: Photodynamic therapy (PDT) is photo-treatment of malignant or benign diseases using photosensitizing agents, light, and oxygen which generates cytotoxic reactive oxygens and induces tumour regressions. Several photodynamic treatments have been extensively studied and the photosensitizers (PS) are key to their biological efficacy, while laser and oxygen allow to appropriate and flexible delivery for treatment of diseases. Introduction: In presence of oxygen and the specific light triggering, PS is activated from its ground state into an excited singlet state, generates reactive oxygen species (ROS) and induces apoptosis of cancer tissues. Those PS can be divided by its specific efficiency of ROS generation, absorption wavelength and chemical structure. Main body: Up to dates, several PS were approved for clinical applications or under clinical trials. $Photofrin^{(R)}$ is the first clinically approved photosensitizer for the treatment of cancer. The second generation of PS, Porfimer sodium ($Photofrin^{(R)}$), Temoporfin ($Foscan^{(R)}$), Motexafin lutetium, Palladium bacteriopheophorbide, $Purlytin^{(R)}$, Verteporfin ($Visudyne{(R)}$), Talaporfin ($Laserphyrin^{(R)}$) are clinically approved or under-clinical trials. Now, third generation of PS, which can dramatically improve cancer-targeting efficiency by chemical modification, nano-delivery system or antibody conjugation, are extensively studied for clinical development. Conclusion: Here, we discuss up-to-date information on FDA-approved photodynamic agents, the clinical benefits of these agents. However, PDT is still dearth for the treatment of diseases in specifically deep tissue cancer. Next generation PS will be addressed in the future for PDT. We also provide clinical unmet need for the design of new photosensitizers.