• Title/Summary/Keyword: New drug development

Search Result 674, Processing Time 0.026 seconds

Prescription Drug Use in Primary Health Care Posts and Its Improvement Scheme (보건진료소 처방의약품 사용실태 및 개선안)

  • Kim, Chun Mi;Song, Yeon Yi;June, Kyung Ja;Hyeon, Sa Saeng;Shin, Hyun Ju
    • Research in Community and Public Health Nursing
    • /
    • v.24 no.2
    • /
    • pp.123-134
    • /
    • 2013
  • Purpose: The prescription drug list for primary treatment by community health practitioners has been maintained for 30 years without any modification. Thus, this study will suggest an improvement scheme of prescription drug list for primary health care posts through an analysis of drug use in those posts. Methods: A questionnaire survey was implemented with community health practitioners from April to June in 2012. A total of 1,249 copies were analyzed. As for the databases of drug use in the integrated information, a total of 154,229 diagnoses selected in the method of stratified cluster sampling from 39 primary health care posts' data were analyzed. We consulted some experts about the prescription medication list, and referred to the medication information on-line home page for up-to-date drug information. Results: This study ultimately suggests 77 prescription drug items for primary health care posts by eliminating 35 items and replacing 1 item from the original list, and adding 4 items to it. Conclusion: This study will provide basic data for revising the prescription drug list in primary health care posts by periodically reflecting adverse effects in the existing drugs, demographic and environmental changes, and development of new drugs.

A Collaborative Study to Establish the Second Korean National Reference Standard for Snake Venom

  • Han, Kiwon;Jung, Kikyung;Oh, Hokyung;Song, Hojin;Park, Sangmi;Kim, Ji-Hye;Min, Garam;Lee, Byung-Hwa;Nam, Hyun-sik;Kim, Yang Jin;Ato, Manabu;Jeong, Jayoung;Ahn, Chiyoung
    • Toxicological Research
    • /
    • v.34 no.3
    • /
    • pp.191-197
    • /
    • 2018
  • In 2015, a candidate for the second national reference standard (NRS) of Gloydius snake venom was produced to replace the first NRS of Gloydius snake venom. In the present study, the potencies of the candidate were determined by a collaborative study, and the qualification of the candidate was estimated. The potencies of the candidate were determined by measuring the murine lethal titers and lapine hemorrhagic titers of venom against the regional working reference standard (RWRS) for antivenom using the methods described in the previous report for the first NRS of Gloydius snake venom. Three Korean facilities contributed data from a total of 30 independent assays. Subsequently, two foreign national control research laboratories contributed to this collaborative study. The results were calculated using the Reed-Muench method for lethality and determined using a mixed-effects model for hemorrhage. The general common potencies of the lethal and hemorrhagic titers were obtained from the results of the 30 tests performed at three Korean facilities. The results are expressed in micrograms for 1 test dose (TD) with a 95% confidence interval as follows: a lethal titer of $90.13{\mu}g/TD$ (95% confidence interval = $87.39{\sim}92.86{\mu}g$) and a hemorrhagic titer of $10.80{\mu}g/TD$ (95% confidence interval = $10.46{\sim}11.14{\mu}g$). In addition, the candidate preparation showed good quality evaluation according to the results of the quality estimation of the candidate and is judged to be suitable to serve as the Korean NRS for snake venom. In conclusion, the second NRS of Gloydius snake venom was established in this study and will be used for national quality control, including a national lot release test of Korean antivenom products.

Development and Applications of Proteomics Technology (Proteomics 기술의 개발 및 응용)

  • 이지원;이은규
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.99-106
    • /
    • 2001
  • Proteomics research includes identification and quantitation of single protein and/or protein complex, profiling of protein expression changes in response to biological perturbations, characterization of protein functions and interactions, and elucidation the linkage between proteins and diseases. In this review paper, recent developments in the basic technologies involved in the proteomics research such as 2-dimensional PAGE and mass spectrometry are discussed. Also, the application areas of proteomics technology such as protein expression mapping and cell map proteomics are introduced with the focus on new drug development.

  • PDF

Effect of Ssanghwa-tang Extract on Antioxidant and Anti-aging Enzyme Activities (쌍화탕 추출물이 항산화효소 및 항노화관련 효소 활성에 미치는 영향)

  • Park, Ji-Young;Hwang, Jae-Gyu;Yun, Jong-Kuk;Han, Kil-Hwan;Do, Eun-Ju;Kim, Sung-Ok;Kim, Mi-Ryeo
    • The Korea Journal of Herbology
    • /
    • v.27 no.3
    • /
    • pp.67-74
    • /
    • 2012
  • Objectives : The present study was designed to investigate effects of Ssanghwa-tang (Shu$\bar{a}$nghu$\bar{a}$-g$\bar{e}$ng) on oxidation/reduction reaction-related and aging-related enzymes $in$ $vitro$. Methods : We performed MTT assay, collagenase inhibition assay, elastase inhibition assay, tyrosinase inhibition assay, DPPH free radical scavenging assay, SOD-like activity and xanthine oxidase (XO) inhibition assay. Results : The 50% ethanol (EtOH) extract of Ssanghwa-tang (SHT) showed 55% inhibition of collagenase activity, and 42% inhibition of elastase activity at 1 mg/ml concentration. Also it's treatment showed 18% inhibition of tyrosinase activity, to relate whitening effect, at the same dose of 50% ethanol extract of SHT. Antioxidant activities were determined by DPPH radical scavenging, XO inhibiting activity and SOD-like activity. These scavenging, XO-inhibiting and SOD-like activities were measured in 80%, 75%, and 28% inhibitions, respectively, at a 1 mg/ml treated dose, compared to those of control. The inhibitory effects of 50% EtOH extract on aging and oxidation-related enzyme activities were higher than those of water extract and 95% EtOH extract. Conclusions : Taken together, our findings suggest that the SHT has potential and applicable benefits for development of cosmetics to have anti-aging (anti-wrinkle and whitening) and anti-oxidation functions.

Chemical Genomics with Natural Products

  • Jung, Hye-Jin;Ho, Jeong-Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.651-660
    • /
    • 2006
  • Natural products are a rich source of biologically active small molecules and a fertile area for lead discovery of new drugs [10, 52]. For instance, 5% of the 1,031 new chemical entities approved as drugs by the US Food and Drug Administration (FDA) were natural products between 1981 and 2002, and another 23% were natural product-derived molecules [53]. These molecules have evolved through millions of years of natural selection to interact with biomolecules in the cells or organisms and offer unrivaled chemical and structural diversity [14, 37]. Nonetheless, a large percentage of nature remains unexplored, in particular, in the marine and microbial environments. Therefore, natural products are still major valuable sources of innovative therapeutic agents for human diseases. However, even when a natural product is found to exhibit biological activity, the cellular target and mode of action of the compound are mostly mysterious. This is also true of many natural products that are currently under clinical trials or have already been approved as clinical drugs [11]. The lack of information on a definitive cellular target for a biologically active natural product prevents the rational design and development of more potent therapeutics. Therefore, there is a great need for new techniques to expedite the rapid identification and validation of cellular targets for biologically active natural products. Chemical genomics is a new integrated research engine toward functional studies of genome and drug discovery [40, 69]. The identification and validation of cellular receptors of biologically active small molecules is one of the key goals of the discipline. This eventually facilitates subsequent rational drug design, and provides valuable information on the receptors in cellular processes. Indeed, several biologically crucial proteins have already been identified as targets for natural products using chemical genomics approach (Table 1). Herein, the representative case studies of chemical genomics using natural products derived from microbes, marine sources, and plants will be introduced.

Cardiotoxicity assessment of 31 herbal formulae by activity of hERG potassium channel in HEK 293 cells (hERG 칼륨채널 활성도 변화에 따른 31종 한약처방의 심장독성 평가)

  • Ha, Hyekyung;Jin, Seong Eun;Lee, Sion;Kim, Dong-Hyun;Seo, Chang-Seob;Shin, Hyeun-kyoo
    • The Journal of Korean Medicine
    • /
    • v.43 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • Objectives: Drug-induced blockade of the human ether-à-go-go related gene (hERG) potassium ion channel causes acquired long QT syndrome, which is known to cause cardiac arrhythmias and be fatal. To establish safety evidence of herbal formulae, we evaluated the effects of 31 herbal formulae on hERG channel activity. Methods: The current through hERG channel was measured by changing the membrane voltage before and after treatment with 31 herbal formulae in HEK 293 cell overexpressing hERG channel using a whole-cell patch clamp system. The current-voltage curves and the activity curves were fitted, and the hERG activity and 50% inhibitory concentration (IC50) according to each herbal formula were calculated. Results: Chokyungjongok-tang, Oncheong-eum, and Cheongsangbangpung-tang strongly inhibited the hERG activity, with IC50 values of 67.67, 141.2, and 296.3 ㎍/mL, respectively. Yeonkyopaedok-san, Eunkyo-san, Ukgan-san gajinphibanha, Daegunjoong-tang (except Oryzae gluten), Insamyangyoung-tang, Banhahubak-tang, SokyungHwalhyul-tang, Jodeung-san, Hyeonggaeyeongyo-tang, and Bangkeehwangkee-tang weakly inhibited hERG activity, with IC50 values ranging from 400 to 1000 ㎍/mL. The other 18 herbal formulae showed very weak hERG activity inhibition of less than 50% at the highest concentration (1000 ㎍/mL). Conclusion: This study provided safety information on cardiotoxicity by cardiac arrhythmia risk assessment of herbal formulae, and is expected to be a reference data for predicting the safety and risk of herbal formulae.

Formulation of Liquid Oral Preparations Containing Itraconazole (이트라코나졸의 경구용 액제 처방화)

  • Jung, Ki-Seop;Hong, Ji-Woong;Choi, Ki-Song;Chi, Sang-Cheol;Park, Eun-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.32 no.4
    • /
    • pp.299-303
    • /
    • 2002
  • The oral bioavailability of itraconazole is variable and low in fasting state. This is mainly due to the low solubility of this drug. Bioavailability can be improved by changing the formulation and it is general that the liquid preparations show greater bioavailability than the solid dosage forms such as tablets and capsules do. Benzyl alcohol-water binary mixture showed the excellent solubilizing capacity for itraconazole but the release of the drug from the preparation needs to be enhanced. In this study, various nonionic surfactants and hydrophilic polymers, poloxamers, were screened to investigate their effects on the releasε of itraconazole from the liquid preparations. Poloxamer 407 showed the most enhancing effect on the drug release and the release rate was proportional to thε amount of poloxamer 407 added. A liquid preparation of itraconazole, consisting of benzyl alcohol/water/poloxamer 407 ternary solvent system, releasεd more than 80% of the total drug amount at 5 min and showεd the possibility of a new formulation development.

Development Trend of Biosensors for Antimicrobial Drugs in Water Environment (물 환경 내 항생제 약물 분석을 위한 바이오센서 개발 연구 동향)

  • Goh, Eunseo;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.565-572
    • /
    • 2016
  • While there have been great demands on improving domestic water pollution issues, the necessity for real time monitoring of particular drug residues in water resources has been raised since drug residues including antibiotics could provoke new trains of drug-resistant bacteria in water environments. Among many different types of drugs used for pharmaceutical treatment, antibiotics are considered to be one of the most hazardous to our ecosystem since they can rapidly promote the spreading of drug-resistant bacteria in water environments. In this mini-review, we will highlight recent developments made on creating in-situ sensing platforms for the fast monitoring of antibiotic residues in aquatic environmental samples focusing on optical and electrochemical techniques. Related recent technology developments and the resulting economy effects will also be discussed.

A Review on Chemical-Induced Inflammatory Bowel Disease Models in Rodents

  • Randhawa, Puneet Kaur;Singh, Kavinder;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.4
    • /
    • pp.279-288
    • /
    • 2014
  • Ulcerative colitis and Crohn's disease are a set of chronic, idiopathic, immunological and relapsing inflammatory disorders of the gastrointestinal tract referred to as inflammatory bowel disorder (IBD). Although the etiological factors involved in the perpetuation of IBD remain uncertain, development of various animal models provides new insights to unveil the onset and the progression of IBD. Various chemical-induced colitis models are widely used on laboratory scale. Furthermore, these models closely mimic morphological, histopathological and symptomatical features of human IBD. Among the chemical-induced colitis models, trinitrobenzene sulfonic acid (TNBS)-induced colitis, oxazolone induced-colitis and dextran sulphate sodium (DSS)-induced colitis models are most widely used. TNBS elicits Th-1 driven immune response, whereas oxazolone predominantly exhibits immune response of Th-2 phenotype. DSS-induced colitis model also induces changes in Th-1/Th-2 cytokine profile. The present review discusses the methodology and rationale of using various chemical-induced colitis models for evaluating the pathogenesis of IBD.

Bioequivalence of Acer Capsule to Airtal Tablet (Aceclofenac 100 mg) (에어탈 정(아세클로페낙 100 mg)에 대한 에이서 캅셀의 생물학적 동등성)

  • Cho, Hea Young;Kim, Soo Jin;Oh, In Joon;Moon, Jai Dong;Lee, Yong Bok
    • Korean Journal of Clinical Pharmacy
    • /
    • v.12 no.1
    • /
    • pp.22-28
    • /
    • 2002
  • Aceclofenac, 2-[(2',6'-dichlorphenyl)amino]phenylacetoxiacetic acid, is a new nonsteroidal anti-inflammatory drug that belongs to the family of phenylacetic acids. It shows good tolerance and potent analgesic/antiinflammatory properties, and acts on cartilaginous chondriocytes, stimulating their repair mechanism. The purpose of the present study was to evaluate the bioequivalence of two aceclofenac products, $Airtal^{TM}$ tablet (Daewoong Pharmaceutical Co.) and $Acer^{TM}$ capsule (Kyungdong Pharmaceutical Co.), according to the guideliner of Korea Food and Drug Administration (KFDA). The aceclofenac release from the two aceclofenac products in vitro was tested using KP VII Apparatus II method at pH 7.8 dissolution media. Sixteen normal male volunteers, $23.13\pm2.03$ years in age and $66.33\pm7.08$ kg in body weight, were divided into two groups and a randomized $2\times2$ cross-over study was employed. After one tablet or capsule containing 100 mg of aceclofenac was orally administered, blood was taken at predetermined time intervals and the concentrations of aceclofenac in serum were determined using HPLC with UV detector. The dissolution profiles of the two aceclofenac products were very similar at pH 7.8 dissolution media. The pharmacokinetic parameters such as $AUC_t,\;C_{max}\;and\;T_max$ were calculated and ANOVA test was utilized for the statistical analysis of the parameters. The results showed that the differences in $AUC_t,\;C_{max}\;and\;T_{max}$ between two products were $6.50\%,\;-1.06\%\;and\;11.96\%$ respectively, when calculated against the $Airtal^{TM}$ tablet. The powers $(1-\beta)\;for\;AUC_t,\;C_{max}\;were\;89.82\%\;and\;82.84\%$, respectively. Minimum detectable differences $(\Delta)\;at\;\alpha=0.05\;and\;1-\beta=0.8$ were less than $20\%\;(e.g.,\;17.51\%\;and\;19.30\%\;for\;AUC_t,\;C_{max}$, ). The $90\%$ confidence intervals were within $\pm20\%\;(e.g.,\;-3.73\%\sim16.73\%\;and\;-12.34\%\sim10.22\%\;for\;AUC_t,\;C_{max},\;respectively)$. Two parameters met the criteria of KFDA for bioequivalence, indicating that $Acer^{TM}$ capsule is bioequivalent to $Airtal^{TM}$ tablet.

  • PDF