• Title/Summary/Keyword: New and known compounds

Search Result 346, Processing Time 0.03 seconds

Three New Oleanane-Type Triterpene Saponins from Gladiolus gandavensis

  • Tai, Zhi-Gang;Cai, Le;Yang, Ya-Bin;Liu, Chuan-Shui;Xia, Jian-Jun;Ding, Zhong-Tao
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2786-2790
    • /
    • 2010
  • Three new oleanane-type triterpene saponins (1, 2 and 3) were isolated from aerial parts of Gladiolus gandavensis, along with two known compounds (4 and 5). Their structures were elucidated as 29-O-($\beta$-D-glucopyranosyl)-$2{\beta}$,$3{\beta}$-dihydroxyolean-12-en-28-oicacid(1), 3-O-($\beta$-D-xylopyranosyl)-29-O-($\beta$-D-glucopyranosyl)-12-en-28-oic acid (2), and $2{\beta}$,$3{\beta}$,29-trihydroxyolean-12-en-28-oic acid 28-O-[$\beta$-D-glucopyranosyl($1{\rightarrow}2$)-($\alpha$-L-rhamnopyranosyl($1{\rightarrow}6$))-$\beta$-D-glucopyranosyl] ester (3), by spectroscopic methods, and by comparison with known analogues. These oleanane-type triterpene saponins glycosidated at C-29 were not obtained frequently.

Immunobioloical Activity of a New Benzyl Benzoate from the Aerial Parts of Solidago virga-aurea var. gigantea

  • Choi Sang Zin;Choi Sang Un;Bae Seong Yun;Pyo Suhk neung;Lee Kang Ro
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.49-54
    • /
    • 2005
  • The chromatographic separation of the hexane soluble fraction of the methanol extract of the aerial parts of Solidago virga-aurea var. gigantea Mo. (Compositae) led to the isolation of a new benzylbenzoate (1) together with four known benzylbenzoates (2-5). Their structures were determined as 2-methoxybenzyl-2-hydroxybenzoate (1), benzyl-2-hydroxy-6-methoxy­benzoate (2), 2-methoxybenzyl-2,6-dimethoxybenzoate (3), 2-methoxybenzyl-2-methoxy-6­hydroxybenzoate (4), and benzyl-2,6-dimethoxybenzoate (5). Their structures were established by spectroscopic methods. Biological effects of compounds, 1 and 2, were investigated in vitro usingherapeutic agents by stimulating macrophage functions, with potential use in the treat­ mouse peritoneal macrophages. The benzylbenzoates (1 and 2) could serve as immunotherapeutic agents by stimulating macrophage functions, with potential use in the treatment of infectious diseases.

Treatment of decomposition of Aqueous 2,4-Dichlorophenol Solution by Ultrasonic Irradiation (초음파 검사에 의한 수중의 2,4-Dichlorophenol 분해처리)

  • 손종렬;문경환;김영환;우완기
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.54-62
    • /
    • 1999
  • 2,4-Dichlorophenol was known pollutants caused by the endocrine disruptor into the refractory substances of environment and this is difficult to be degradable by conventional methods. Therefore, a considerable interest has been devoted to developing new process where 2,4-Dichlorophenol can easily decomposed. In this study, the series of ultrasonic irradiation for removal of 2,4-Dichlorophenol has been selected as a model reaction in the batch reactor system in order to obtain the basic data investigate the influence of various experimental parameters such as concentration, pH, reaction temperature, acoustic intensity. The products obtained form the ultrasonic irradiation were analysed by GC/MS and HPLC. The formation of $H_2O_2$, a well-known the strong oxidant was found proportionally to increase with irradiation time. The intermediates of ultrasonic irradiation of 2,4-Dichlorophenol were identified as HCl, catechol, hydroquinone, o,p-benzoquinone, muconic acid, and maleic acid. The final products of this was $CO_2$ and $H_2O$. As the decomposition of 2,4-Dichlorophenol proceeds by the ultrasonic irradiation, the pH of 2,4-Dichlorophenol containing aqueous solution increases slowly, The decomposition of 2,4-Dichlorophenol was found to be occured fast in the basic medium. In general, the rate of reaction is proportional to the reaction temperature obeying the Arrhenius' law. However, in the ultrasonic irradiation, this suggests as the reaction temperature increase the decomposition rate of the reactant decreases. This result meant that the increase of reaction temperature due to the increase of vapor pressure of water accelerated the decrease of acoustic intensity which was can be proportional to the decomposition rae of these compounds. It was found that more than 80% of phenol solution was removed within hours in all reaction conditions. The reaction order in the degradation of the 2,4-Dichlorophenol compounds was verified as the Pseude-first order. From the fore-mentioned results, it can be concluded that the refractory organic compounds caused by endocrine disruptor as 2,4-dichlorophenol could be removed by the ultrasonic irradiation with radicals, such as $H{\;}{\cdot}{\;}and{\;}OH{\;}{\cdot}$ radical causing the high increase of pressure and temperature. Finally, it apeared that the technology using ultrasonic irradiation can be applied to the treatment of refractory substances caused by endocrine disruptor which are difficult to be decomposed by the conventional methods.

  • PDF

The Role of Immunostimulants in Monogastric Animal and Fish - Review -

  • Sohn, K.S.;Kim, M.K.;Kim, J.D.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1178-1187
    • /
    • 2000
  • Many immunostimulating substances have been developed to improve immunity of domestic animals, although their exact mode of action and effects are not clearly defined, and they are now widely used in feed industry. Bacterial lipopolysaccharides, called endotoxin, in particular may have a profound effect not only on the immune system but also on macrophages of the reticuloendothelial system. Glucans from a variety of yeast cell wall have been shown to stimulate both specific and non-specific immune responses and to increase growth performance in pigs. Recently, there has been great interest in the role of complex carbohydrates in disease prevention and treatment. Mannanoligosaccharide is a glucomannoprotein complex derived from the cell wall of yeast. Generally, it was also known that the deficiencies of some major vitamins (vitamin A, E and C) and minerals (chromium and selenium) lead to impaired immune system and, as a result, immune function is depressed and recovery delayed. On the other hand, many researchers suggested that one possible reason for the superior performance observed in pigs fed plasma protein may be because of the presence of biologically active plasma proteins (e.g., immunoglobulins) which are known to contribute to the health of the starter pig. And, immunoglobulins present in plasma protein have been implicated as contributing to the overall immunocompetence of the newborn pig. Other immunostimulants, lactoferrin and lysozyme, mainly found in milk and egg white, have been known as having bacteriocidal and bacteriolytic effect. When considering practical use of immunostimulants, the concept of using immunostimulants is new to many people and, in most cases, it is poorly understood how and why such compounds act, and how they should be used in practice. Therefore, in order to clarify the reason for discrepancies in results, special attention should be paid to the dose/response relationship of immunostimulants and the duration of the effect.

Review of Silymarin as a Model for Hepatotherapeutic Drug Development Using Herbal Resources (간질환의 경향분석과 한약을 이용한 약물개발 모델로서의 실라마린제제 고찰)

  • Jung, Jong-Mi;Park, Hye-Jung;Cho, Jung-Hyo;Son, Chang-Gue
    • The Journal of Korean Medicine
    • /
    • v.29 no.3
    • /
    • pp.124-130
    • /
    • 2008
  • Herbal plants or traditional Oriental medicine have been considered as a potential resource of new drug development worldwide. However, traditional Korean medicine has given little effort to the field of new drug development. This study reports on a plant-derived hepatotherapeutic drug, silymarin, which has been popularly used in many countries. It was discovered as an active compound from Silybum marianum (milk thistle) which has been known as a medicinal plant having hepatoprotective properties in both European and Asian countries. While it has been used as an herbal prescription in Asia, its active compounds or scientific mechanisms were intensively studied in Europe. Currently, silymarin is one of the most powerful herbal extracts in the world, and its usage is being expanded to many other medical purposes. This report would be helpful for providing an informative example of herbal-derived drug development to Oriental doctors or scientists in the Oriental medicinal field.

  • PDF

Extraction of Flavonoid Components from Persimmon Leaf, Thistle and New Green (감잎, 엉겅퀴, 뉴그린으로부터 플라보노이드성분의 추출)

  • Hong, In Kwon;Park, Bo Ra;Jeon, Gil Song;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.276-279
    • /
    • 2016
  • In this study, we extracted active components from thistle, persimmon leaf, and new green which are known to have a high content of antioxidants and also analyzed the 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavening activity and flavonoid content. Both ultrapure water and alcohol were used as extraction solvents and the ratio of both solvents, sample, amunts extraction time, and extraction temperature were varied. The optimal extraction condition of each natural compounds were 2.5~3.5 h of the extraction time and 50 g/L of the sample amount. The optimal ratio of ultrapure water and alcohol and extraction temperature were as follows; persimmon leaf (55~65 vol%, $50{\sim}60^{\circ}C$), thistle (40~50 vol%, $55{\sim}65^{\circ}C$) and new green (55~65 vol%, $50{\sim}60^{\circ}C$). In addition, the antioxidant capacity and flavonoid content of the extract increased in the order of persimmon leaf, thistle, and new green.

Melanogenesis regulatory constituents from Premna serratifolia wood collected in Myanmar

  • WOO, SO-YEUN
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.21-22
    • /
    • 2019
  • Melanin is a mixture of pigmented biopolymers synthesized by epidermal melanocytes that determine the skin, eye, and hair colors. Melanocytes produce two different kinds of melanin, eumelanin (dark brown/black insoluble pigments found in dark skin and dark hair and pheomelanin (lighter red/yellow). The biological role of melanin is to prevent skin damage by ultraviolet (UV) radiation. However, the overproduction or deficiency of melanin synthesis could lead to serious dermatological problems, which include melasma, melanoderma, lentigo, and vitiligo. Therefore, regulating melanin production is important to prevent the pigmentation disorders. Myanmar has a rich in natural resources. However, the chemical constituents of these natural resources in Myanmar have not been fully investigated. In the effort to search for compounds with anti-melanin deposition activity from Myanmar natural resources, five plants were collected in Myanmar. Extracts of these collected five plants were tested for anti-melanin deposition activity against a mouse melanoma cell line (B16-F10) induced with ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH) and 3-isobutyl-1-methylxanthine (IBMX), and their anti-melanin deposition activities were compared with the positive control, arbutin. Among the tested extracts, the CHCl3 extracts of the Premna serratifolia (syn: P. integrifolia) wood showed anti-melanin deposition activities with IC50 values of $81.3{\mu}g/mL$. Hence, this study aims to identify secondary metabolites with anti-melanin deposition activity from P. serratifolia wood of Myanmar. P. serratifolia belongs to the Verbenaceae family and is widely distributed in near western sea coast from South Asia to South East Asia, which include India, Malaysia, Vietnam, Cambodia, and Sri Lanka. People in Tanintharyi region located in the southern part of Myanmar utilize the P. serratifolia, Sperethusa crenulata, Naringi crenulata, and Limonia acidissima as Thanaka, traditional cosmetics in Myanmar. Thanaka is applied in the form of paste onto skins to make it smooth and clear, as well as to prevent wrinkles, skin aging, excessive facial oil, pimples, blackheads, and whiteheads. However, the chemical constituents responsible for their cosmetic properties are yet to be identified. Moreover, the chemical constituents of P. serratifolia was almost uncharacterized. Investigation of the P. serratifolia chemical constituents is thus an attractive endeavor to discover new anti-melanin deposition active compounds. The investigation of the chemical constituents of the active CHCl3 extract of P. serratifolia led to isolation of four new lignoids, premnan A (1), premnan B (2), taungtangyiol C (3), and 7,9-dihydroxydolichanthin B (4), together with premnan C (5) (assumed to be an artifact), one natural newlignoid,(3R,4S)-4-(1,3-benzodioxol-5-ylcarbonyl)-3-[(R)-1-(1,3-benzo dioxol-5-yl)-1-hydroxy methyl]tetrahydro-2-furanone (6), and five known compounds (7-11)1,2). The structures of all isolated compounds were determined on the basis of their spectroscopic data and by comparison with the reported literatures. The absolute configurations of 1-3 and 5 were also determined by optical rotation and circular dichroism (CD) data analyses1). The anti-melanin deposition activities of all the isolated compounds were evaluated against B16-F10 cell line. 7,9-Dihydroxydolichanthin B (4) and ($2{\alpha},3{\alpha}$)-olean-12-en-28-oic acid (11) showed strong anti-melanin deposition activities with IC50 values of 18.4 and $11.2{\mu}M$, respectively, without cytotoxicity2). On the other hand, compounds 1-3, 5, and 7 showed melanogenesis enhancing activities1). To better understand their anti-melanin deposition mechanism, the effects of 4 and 11 on tyrosinase activities were investigated. The assay indicated that compounds 4 and 11 did not inhibit tyrosinase. Furthermore, we also examined the mRNA expression of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). Compounds 4 and 11 down-regulated the expression of Tyr and Mitf mRNAs, respectively. Although the P. serratifolia wood has been used as traditional cosmetics in Myanmar for centuries, there are no scientific evidences to support its effectiveness as cosmetics. Investigation of the anti-melanin deposition activity of the chemical constituents of P. serratifolia thus provided insight into the effectiveness of the P. serratifolia wood as a cosmetic agent.

  • PDF

Anti-malarial Drug Design by Targeting Apicoplasts: New Perspectives

  • Mukherjee, Avinaba;Sadhukhan, Gobinda Chandra
    • Journal of Pharmacopuncture
    • /
    • v.19 no.1
    • /
    • pp.7-15
    • /
    • 2016
  • Objectives: Malaria has been a major global health problem in recent times with increasing mortality. Current treatment methods include parasiticidal drugs and vaccinations. However, resistance among malarial parasites to the existing drugs has emerged as a significant area of concern in anti-malarial drug design. Researchers are now desperately looking for new targets to develop anti-malarials drug which is more target specific. Malarial parasites harbor a plastid-like organelle known as the 'apicoplast', which is thought to provide an exciting new outlook for the development of drugs to be used against the parasite. This review elaborates on the current state of development of novel compounds targeted againstemerging malaria parasites. Methods: The apicoplast, originates by an endosymbiotic process, contains a range of metabolic pathways and housekeeping processes that differ from the host body and thereby presents ideal strategies for anti-malarial drug therapy. Drugs are designed by targeting the unique mechanism of the apicoplasts genetic machinery. Several anabolic and catabolic processes, like fatty acid, isopenetyl diphosphate and heme synthess in this organelle, have also been targeted by drugs. Results: Apicoplasts offer exciting opportunities for the development of malarial treatment specific drugs have been found to act by disrupting this organelle's function, which wouldimpede the survival of the parasite. Conclusion: Recent advanced drugs, their modes of action, and their advantages in the treatment of malaria by using apicoplasts as a target are discussed in this review which thought to be very useful in desigining anti-malarial drugs. Targetting the genetic machinery of apicoplast shows a great advantange regarding anti-malarial drug design. Critical knowledge of these new drugs would give a healthier understanding for deciphering the mechanism of action of anti-malarial drugs when targeting apicoplasts to overcome drug resistance.

Classification of HDAC8 Inhibitors and Non-Inhibitors Using Support Vector Machines

  • Cao, Guang Ping;Thangapandian, Sundarapandian;John, Shalini;Lee, Keun-Woo
    • Interdisciplinary Bio Central
    • /
    • v.4 no.1
    • /
    • pp.2.1-2.7
    • /
    • 2012
  • Introduction: Histone deacetylases (HDAC) are a class of enzymes that remove acetyl groups from ${\varepsilon}$-N-acetyl lysine amino acids of histone proteins. Their action is opposite to that of histone acetyltransferase that adds acetyl groups to these lysines. Only few HDAC inhibitors are approved and used as anti-cancer therapeutics. Thus, discovery of new and potential HDAC inhibitors are necessary in the effective treatment of cancer. Materials and Methods: This study proposed a method using support vector machine (SVM) to classify HDAC8 inhibitors and non-inhibitors in early-phase virtual compound filtering and screening. The 100 experimentally known HDAC8 inhibitors including 52 inhibitors and 48 non-inhibitors were used in this study. A set of molecular descriptors was calculated for all compounds in the dataset using ADRIANA. Code of Molecular Networks. Different kernel functions available from SVM Tools of free support vector machine software and training and test sets of varying size were used in model generation and validation. Results and Conclusion: The best model obtained using kernel functions has shown 75% of accuracy on test set prediction. The other models have also displayed good prediction over the test set compounds. The results of this study can be used as simple and effective filters in the drug discovery process.

Metabolite profiles of ginsenosides Rk1 and Rg5 in zebrafish using ultraperformance liquid chromatography/quadrupole-time-of-flight MS

  • Shen, Wenwen;Wei, Yingjie;Tang, Daoquan;Jia, Xiaobin;Chen, Bin
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.78-84
    • /
    • 2017
  • Background: In the present study, metabolite profiles of ginsenosides Rk1 and Rg5 from red ginseng or red notoginseng in zebrafish were qualitatively analyzed with ultraperformance liquid chromatography/quadrupole-time-of-flight MS, and the possible metabolic were pathways proposed. Methods: After exposing to zebrafish for 24 h, we determined the metabolites of ginsenosides Rk1 and Rg5. The chromatography was accomplished on UPLC BEH C18 column using a binary gradient elution of 0.1% formic acetonitrile-0.1% formic acid water. The quasimolecular ions of compounds were analyzed in the negative mode. With reference to quasimolecular ions and MS2 spectra, by comparing with reference standards and matching the empirical molecular formula with that of known published compounds, and then the potential structures of metabolites of ginsenosides Rk1 and Rg5 were acquired. Results: Four and seven metabolites of ginsenoside Rk1 and ginsenoside Rg5, respectively, were identified in zebrafish. The mechanisms involved were further deduced to be desugarization, glucuronidation, sulfation, and dehydroxymethylation pathways. Dehydroxylation and loss of C-17 residue were also metabolic pathways of ginsenoside Rg5 in zebrafish. Conclusion: Loss of glucose at position C-3 and glucuronidation at position C-12 in zebrafish were regarded as the primary physiological processes of ginsenosides Rk1 and Rg5.