• Title/Summary/Keyword: New and Renewable energy

Search Result 4,035, Processing Time 0.037 seconds

Structural, optical, and electrical properties on Cu(In,Ga)$Se_2$ thin-films with Cu-defects and In/(In+Ga) ratio (Cu(In,Ga)$Se_2$ 박막의 Cu 결함 및 In, Ga 비율의 변화에 따른 구조적, 광학적, 전기적 특성 연구)

  • Jeong, A.R.;Kim, G.Y.;Jo, W.;Jo, H.J.;Kim, D.H.;Sung, S.J.;Kang, J.K.;Lee, D.H.;Nam, D.H.;Cheong, H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.47.1-47.1
    • /
    • 2011
  • We report on a direct measurement of two-dimensional chemical and electrical distribution on the surface of photovoltaic Cu(In,Ga)$Se_2$ thin-films using a nano-scale spectroscopic and electrical characterization, respectively. The Raman measurement reveals non-uniformed surface phonon vibration which comes from different compositional distribution and defects in the nature of polycrystalline thin-films. On the other hand, potential analysis by scanning Kelvin probe force microscopy shows a higher surface potential or a small work function on grain boundaries of the thin-films than on the grain surfaces. This demonstrates the grain boundary is positively charged and local built-in potential exist on grain boundary, which improve electron-hole separation on grain boundary. Local electrical transport measurements with scanning probe microscopy on the thin-films indicates that as external bias is increases, local current is started to flow from grain boundary and saturated over 0.3 V external bias. This accounts for carrier behavior in the vicinity of grain boundary with regard to defect states. We suggest that electron-hole separation at the grain boundary as well as chemical and electrical distribution of polycrystalline Cu(In,Ga)$Se_2$ thin-films.

  • PDF

The Study on the Controller for Supplying Stably Power with a Stand-Alone Photovoltaic/Wind/Small Generator Hybrid Power Generation System (독립형 태양광, 풍력, 소형발전기 복합시스템에서 안정적인 전력공급을 위한 컨트롤러에 관한 연구)

  • Choi, Byoung-Soo;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.4
    • /
    • pp.48-56
    • /
    • 2012
  • The object of this paper is the controller for supplying stably power in a separate house in which a hybrid electrical storage system with a stand-alone photovoltaic/wind power generation system and a small generator is applied. In the photovoltaic/wind hybrid power system used in the separate house, when only the battery is used in sunless days, the capacity of the battery is become larger. In particular, as in recent days, if cloudy days are frequent due to anomaly climate, it is difficult to estimate the number of sunless days. Accordingly, it is preferable to build the electrical storage system that numbers of sunshineless days are to be controlled and a shortage amount of the power generation capacity is to be handled by a small generator system. In order to supply stably power of new renewable energy such as solar to any separate houses, it is preferable to reduce the capacity of battery by decreasing the number of sunless days when estimating the capacity of battery and to drive the small generator for compensation of the power shortage. Such system needs components including inverters for photovoltaic and wind power generation system, batteries and controllers for automatically driving the small generator, based upon the nature of the stand-alone house, and it is preferable to use the controller having a simpler and higher stability by adopting the all-in-one scheme to facilitate its maintenance.

Gas trasport and Gas hydrate distribution characteristics of Southern Hydrate Ridge: Results from ODP Leg 204

  • Lee, Young-Joo;Ryu, Byong-Jae;Kim, Ji-Hoon;Lee, Sang-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.407-409
    • /
    • 2006
  • Geochemical analyses carried out on samples collected from cores on and near the southern smit of Hydrate Ridge have advanced understanding by providing a clear contrast of the two major modes of marine gas hydrate occurrence. High concentrations (15%-40% of pore space) of gas hydrate occurring at shallow depths (0-40 mbsf) on and near the southern summit are fed by gas migrating from depths of as much as 2km within the accretionary prism. This gas carries a characteristic minor component of C2-C5 thermogenic hydrocarbons that enable tracing of migration pathways and may stabilize the occurrence of some structure II gas hydrate. A structure II wet gas hydrate that is stable to greater depths and temperatures than structure I methane hydrate may account for the deeper, faint second bottom simulating reflection (BSR2) that occurs on the seaward side of the ridge. The wet gas is migrating In an ash/turbidite layer that intersects the base of gas hydrate stability on the seaward side of and directly beneath the southern summit of Hydrate Ridge. The high gas saturation (>65%) of the pore space within this layer could create a two-phase (gas + solid) system that would enable free gas to move vertically upward through the gas hydrate stability zone. Away from the summit of the ridge there is no apparent influx of the gas seeping from depth and sediments are characterized by the normal sequence of early diagenetic processes involving anaerobic oxidation of sedimentary organic matter, initially linked to the reduction of sulfate and later continued by means of carbonate reduction leading to the formation of microbial methane.

  • PDF

Functioning of Economic Systems in the Context of Their Potential Development in the Conditions of Circular Economy

  • Pohrebniak, Anna;Petrashko, Liudmyla;Dovgopol, Nina;Ovsiuchenko, Yurii;Berveno, Oksana
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12
    • /
    • pp.309-315
    • /
    • 2021
  • The purpose of the article is to analyze the functioning of economic systems in the context of the development of their potential in a circular economy. It is determined that the functioning of economic systems to ensure their sustainability should meet modern challenges and provide for the formation of competitive institutional architecture, the introduction of structural and regulatory innovations, the transition to an innovative model of development. The specific principles of functioning of economic systems include openness, nonlinearity, multivectority, dynamism, emergence, uncertainty about the development of economic processes. It is substantiated that the linear nature of development and equilibrium are not dominant in the functioning of economic systems, and increasing the level of economic efficiency should go hand in hand with minimizing the activities of enterprises, which necessitates the use of circular economy. The main prerequisites for the transition to a circular economy are analyzed. It is determined that the basic concept of the circular economy involves the development of a system of production and consumption, which is based on processing, reuse, repair, product sharing, change of consumption patterns and new business models and systems. The main elements of the circular economy include: a closed cycle, the use of renewable energy sources, systems thinking. The correlation of the principles of sustainable development and the peculiarities of the application of the circular economy is analyzed. It is determined that the circular economy contrasts with the traditional linear economic model, which is based on the model of "take-do-consume-throw away". The advantages and disadvantages due to the use of the principles of circular economy are given. Based on the study, steps are identified to accelerate the transition from a linear economy to a circular economy.

A Sustainable Development Issues and Trends in Myanmar: A Text Network Analysis (미얀마의 지속가능발전에 대한 이슈 및 트렌드 분석: 텍스트 네트워크 분석)

  • Phyo Su Thwe;EuiBeom Jeong;DonHee Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.105-122
    • /
    • 2024
  • Myanmar was successful in increasing its sustainable development index during the three years period from 2018 to 2020. However, the index began to decline since 2021. This study aims to analyze both the success factors and obstacles for sustainable development in Myanmar. Using the search terms 'Myanmar' and 'sustainability', online news items were collected from January 2018 to December 2023 and were examined through text network analysis. The study identified the following success factors that contribute to sustainable development in Myanmar: foreign investments, private companies' participation in the effort, human resource development projects, and the use of new and renewable energy. The inhibition factors for the development efforts identified were: government's coercive/restrictive policies, labor rights violations, and forest degradation. The findings of this study provide useful insights for understanding the current status of sustainability in Myanmar from academic and practical perspectives. The results also present benchmarking information for policy-makers in Myanmar and other similar developing countries that are searching for strategic directions in their sustainable development efforts.

Characterization analysis of $CuInS_2$ absorber layer grown by heat treatment of low temperature (저온에서 열처리한 $CuInS_2$ 광흡수층 박막 특성분석)

  • Yang, Hyeon-Hun;Back, Su-Ung;Kim, Han-Wool;Han, Chang-Jun;Lee, Suk-Ho;Jeong, Woon-Jo;Park, Gye-Choon;Lee, Jin;Chung, Hae-Deok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.98.2-98.2
    • /
    • 2010
  • $CuInS_2$ thin films were synthesized by sulfurization of Cu/In Stacked elemental layer deposited onto glass Substrates by vacuum furnace annealing at temperature 200[$^{\circ}C$]. And structural and electrical properties were measured in order to certify optimum conditions for growth of the ternary compound semiconductor $CuInS_2$ thin films with non-stoichiometry composition. $CuInS_2$ thin film was well made at the heat treatment 200[$^{\circ}C$] of SLG/Cu/In/S stacked elemental layer which was prepared by thermal evaporator, and chemical composition of the thin film was analyzed nearly as the proportion of 1 : 1 : 2. Physical properties of the thin film were investigated at various fabrication conditions substrate temperature, annealing and temperature, annealing time by XRD, FE-SEM and hall measurement system. At the same time, carrier concentration, hall mobility and resistivity of the thin films was $9.10568{\times}10^{17}$ [$cm^{-3}$], 312.502 [$cm^2/V{\cdot}s$] and $2.36{\times}10^{-2}$ [${\Omega}{\cdot}cm$], respectively.

  • PDF

An Analysis on rear contact for crystalline silicon solar cell (결정질 실리콘 태양전지에 적용하기 위한 후면전극 형성에 관한 연구)

  • Kwon, Hyukyong;Lee, Jaedoo;Kim, Minjung;Lee, Soohong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.91.1-91.1
    • /
    • 2010
  • There are some methods for increasing efficiency of crystalline silicon solar cells. Among them, It is important to reduce the recombination loss of surface for high efficiency. In order to reduce recombination loss is a way to use the BSF(Back Surface Field). The BSF on the back of the p-type wafer forms a p+layer. so, it is prevented to act electrons of the p-area for the rear recombination. As a result, the leakage current is reduced and the rear-contact has a good Ohmic contact. therefore, open-circuit-voltage and Fill factor(FF) of solar cells are increased. This paper investigates the formation of rear contact process comparing Aluminum-paste(Al-paste) with Aluminum-Metal(99.9%). It is shown that the Aluminum-Metal provides high conductivity and low contact resistance of $21.35m{\Omega}cm$ using the Vacuum evaporation process but, it is difficult to apply the standard industrial process because high Vacuum is needed and it costs a tremendous amount more than Al-paste. On the other hand, using the Al-paste process by screen printing is simple for formation of metal contact and it is possible to produce the standard industrial process. however, it is lower than Aluminum-Metal(99.9) of conductivity because of including mass glass frit. In this study, contact resistances were measured by 4-point prove. each of contact resistances is $21.35m{\Omega}cm$ of Aluminum-Metal and $0.69m{\Omega}cm$ of Al-paste. and then rear contact have been analyzed by Scanning Electron Microscopy(SEM).

  • PDF

Gas diffusion electrode containing sulfonated poly(ether sulfone) as ionomer for polymer electrolyte fuel cells (Sulfonated poly(ether sulfone)을 함유한 고분자 전해질 연료전지용 기체 확산 전극에 관한 연구)

  • Ryu, Sung Kwan;Choi, Young Woo;Yang, Tae Hyun;Yim, Sung Dae;Kim, Han Sung;Kim, Chang Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.75.2-75.2
    • /
    • 2010
  • Polymer electrolyte fuel cells (PEFCs) have received a lot of attention as a power source for both stationary and mobile applications due to their attractive feature. In general, the performance of PEFCs is highly affected by the property of the electrodes. A PEFC electrode essentially consists of a gas diffusion layer and a catalyst layer. The gas difusion layer is highly porous and hydrophobicized with PTFE polymer. The catalyst layer usually contains electrocatalyst, proton conducting polymer, even PTFE as additive. Particularly, the proton conducting ionomer helps to increase the catalytic activity at three-phase boundary and catalyst utilization. Futhermore, it helps to retain moisture, resulting in preventing the electrodes from membrane dehydration. The most widely used proton conducting ionomer is perfluorinated sulfonic acid polymer, namely, Nafion from DuPont due to its high proton conductivity and good mechanical property. However, there are great demands for alternative ionomers based on non-fluorinated materials in terms of high temperature availability, environmental adaptability and production cost. In this study, the electrodes with the various content of the sulfonated poly(ether sulfone) ionomer in the catalyst layer were prepared. In addition, we evaluated electrochemical properties of the prepared electrodes containing the various amount of the ionomers by using the cyclic voltammetry and impedance spectroscopy to find an optimal ionomer composition in the catalyst layer.

  • PDF

Electrical mechanism analysis of $Al_2O_3$ doped zinc oxide thin films deposited by rotating cylindrical DC magnetron sputtering (원통형 타겟 형태의 DC 마그네트론 스퍼터링을 이용한 산화 아연 박막의 전기적 기제에 대한 분석)

  • Jang, Juyeon;Park, Hyeongsik;Ahn, Sihyun;Jo, Jaehyun;Jang, Kyungsoo;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.55.1-55.1
    • /
    • 2010
  • Cost efficient and large area deposition of superior quality $Al_2O_3$ doped zinc oxide (AZO) films is instrumental in many of its applications including solar cell fabrication due to its numerous advantages over ITO films. In this study, AZO films were prepared by a highly efficient rotating cylindrical dc magnetron sputtering system using AZO target, which has a target material utilization above 80%, on glass substrates in argon ambient. A detailed analysis on the electrical, optical and structural characteristics of AZO thin films was carried out for solar cell application. The properties of films were found to critically depend on deposition parameters such as sputtering power, substrate temperature, working pressure, and thickness of the films. A low resistivity of ${\sim}5.5{\times}10-4{\Omega}-cm$ was obtained for films deposited at 2kW, keeping the pressure and substrate temperature constant at 3 mtorr and $230^{\circ}C$ respectively, mainly due to an increase in carrier mobility and large grain size which would reduce the grain boundary scattering. The increase in carrier mobility with power can be attributed to the columnar growth of AZO film with (002) preferred orientation as revealed by XRD analysis. The AZO films showed a high transparency of>87% in the visible wavelength region irrespective of deposition conditions. Our results offers a cost-efficient AZO film deposition method which can fabricate films with significant low resistivity and high transmittance that can find application in thin-film solar cells.

  • PDF

Effect of various MEA fabrication methods on the PEMFC durability testing at high and low humidity conditions (MEA 제조 방법에 따른 상대습도 변화가 PEMFC 내구성에 미치는 영향)

  • Kim, Kun-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.86.2-86.2
    • /
    • 2010
  • In order to improve polymer electrolyte membrane fuel cell (PEMFC) durability, the durability of membrane electrode assemblies (MEA), in which the electrochemical reactions actually occur, is one of the vital issues. Many articles have dealt with catalyst layer degradation of the durability-related factors on MEAs in relation to loss of catalyst surface area caused by agglomeration, dissolution, migration, formation of metal complexes and oxides, and/or instability of the carbon support. Degradation of catalyst layer during long-term operation includes cracking or delamination of the layer which result either from change in the catalyst microstructure or loss of electronic or ionic contact with the active surface, can result in apparent activity loss in the catalyst layer. Membrane degradation of the durability-related factors on MEAs can be caused by mechanical or thermal stress resulting in formation of pinholes and tears and/or by chemical attack of hydrogen peroxide radicals formed during the electrochemical reactions. All of these effects, the mechanical damage of membrane and degradation of catalyst layers are more facilitated by uneven stress or improper MEA fabrication process. In order to improve the PEMFC durability, therefore, it is most important to minimize the uneven stress or improper MEA fabrication process in the course of the fabrication of MEA. We analyzed the effects of the MEA fabrication condition on the PEMFC durability with MEA produced using CCM (catalyst coated membrane) method. This paper also investigated the effects of MEA fabrication condition on the PEMFC durability by adding additional treatment process, hot pressing and pressing, on the MEA produced using CCM method.

  • PDF