• Title/Summary/Keyword: New and Renewable Power Generation

Search Result 488, Processing Time 0.024 seconds

A Review on World Geothermal Assessment (전세계 지열부존량 평가에 대한 개관)

  • Song, Yoon-Ho;Lee, Young-Min;Lee, Tae-Jong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.613-616
    • /
    • 2008
  • Assessment of geothermal resources like other earth resources is a starting point for decision makers or stakeholders to set up basic plan on its development and R&D policies. In this context, there have been various works on world geothermal assessment, to report different estimates from each other. In this paper, we first introduce the definition of geothermal potential mainly adopted from the article by Muffler and Cataldi (1978) and then summarize the estimates made so far referring the work by Bertani (2003). An updated estimates by Stefansson (2005) are also reviewed in terms of identified resources separately for high-temperature resources for power generation and low-temperature ones for direct-use. Recent estimate of US geothermal resources by MIT (2006) using a volumetric method with extensively accumulated data base is discussed. Finally, we introduce the first geothermal assessment in Korea recently made and discuss its importance.

  • PDF

Two-stage anaerobic biogas plant using piggery wastewater (축산분뇨를 이용한 바이오가스 플랜트)

  • Park, Hyung-Wan;Lee, Hyun-Sang;Park, Kyung-Ho;Kim, Keum-Mo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.251-255
    • /
    • 2008
  • Biogas plant was started in 2007 for the purpose of treatment of $20m^3$/d of wastewater from piggery farm, biogas-production and electricity generation during treatment of the wastewater. The biogas plant is consists of two anaerobic digesters, gas holder and 60 kWe generator. $62,287m^3$ of biogas was produced and 74,745kWh electricity was generated by using the biogas after commencing the biogas plant.

  • PDF

Development of WT-FC Hybrid System for Off-Grid (오프그리드용 풍력-연료전지 하이브리드 시스템 개발)

  • Choi, Jong-Pil;Park, Nae-Chun;Kim, Sang-Hun;Kim, Byeong-Hee;Nam, Yun-Su;Yu, Neung-Su
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.383-386
    • /
    • 2007
  • This paper describes the design and integration of the wind- fuel cell hybrid system. The hybrid system components included a wind turbine, an electrolyzer (for generation of H2), a PEMFC (Proton Exchange Membrane Fuel Cell), storage system and BOP (Balance of Plant) system. The energy input is entirely provided by a wind turbine. A DC-DC converter controls the power input to the electrolyzer, which produces hydrogen and oxygen form water. The hydrogen used the fuel for the PEMFC. The hydrogen is compressed and stored in high pressure tank by hydrogen gas booster system.

  • PDF

Analysis of the Effect of Met Tower Shadow using Computational Fluid Dynamics (전산유체역학을 이용한 풍황탑 차폐효과 해석)

  • Kim, Taesung;Rhee, Huinam;Kim, Hyun-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.35.1-35.1
    • /
    • 2011
  • When the wind speed is measured by the met-mast sensor it is distorted due to the shadow effect of tower. In this paper the tower shadow effect is analyzed by a computational fluid dynamics code. First three dimensional modeling and flow analysis of the met-mast system were performed. The results were compared with the available experimental wind-tunnel test data to confirm the validity of the meshes and turbulence model. Two-dimensional model was then developed based on the three-dimensional works and experimental data. 2D analysis for various Reynolds numbers and turbulence strengths were then performed to establish the tower shadow effect database, which can be utilized as correction factors for the measured wind energy.

  • PDF

A Study for Planning Optimal Location of Solar Photovoltaic Facilities using GIS (GIS를 이용한 태양광시설 설치를 위한 적정지역 선정에 관한 연구)

  • Yun, Sung-Wook;Paek, Yee;Jang, Jae-Kyung;Choi, Duk-Kyu;Kang, Donghyeon;Son, Jinkwan;Park, Min-Jung;Kang, Suk-Won;Gwon, Jin-Kyung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.243-254
    • /
    • 2019
  • With the recent accelerated policy-making and interests in new renewable energy, plans to develop and supply the new renewable energy have been devised across multiple regions in Korea. Solar energy, in particular, is being applied to small-scale power supply in provincial areas, as solar cells are used to convert solar energy into electric energy to produce electric power. Nonetheless, in the case of solar power plants, the need for a large stretch of land and considerable sum of financial support implies that the planning step should take into consideration the most suitable meteorological and geographical factors. In this study, the proxy variables of meteorological and geographical factors associated with solar energy were considered in analyzing the vulnerable areas regarding the photovoltaic power generation facility across the nation. GIS was used in the spatial analysis to develop a map for assessing the optimal location for photovoltaic power generation facility. The final vulnerability map developed in this study did not reveal any areas that exhibit vulnerability level 5 (very high) or 1 (very low). Jeollanam-do showed the largest value of vulnerability level 4 (high), while a large value of vulnerability level 3 (moderate) was shown by several administrative districts including Gwangju metropolitan city, Jeollabuk-do, Chungcheongbuk-do, and Gangwon-do. A value of vulnerability level 2 (low) was shown by the metropolitan cities including Daegu, Ulsan, and Incheon. When the 30 currently operating solar power plants were compared and reviewed, most were found to be in an area of vulnerability level 2 or 3, indicating that the locations were relatively suitable for solar energy. However, the limited data quantity for solar power plants, which is the limitation of this study, prevents the accuracy of the findings to be clearly established. Nevertheless, the significance of this study lies in that an attempt has been made to assess the vulnerability map for photovoltaic power generation facility targeting various regions across the nation, through the use of the GIS-based spatial analysis technique that takes into account the diverse meteorological and geographical factors. Furthermore, by presenting the data obtained for all regions across the nation, the findings of this study are likely to prove useful as the basic data in fields related to the photovoltaic power generation.

Environmental Effect Analysis for PV system using LCA (LCA를 이용한 태양광발전의 환경영향분석)

  • Choi, Bong-Ha;Park, Soo-Uk;Lee, Deok-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.737-741
    • /
    • 2007
  • This paper analyses the environmental effect of 100kw PV system installed in Tibet using Life Cycle Assessment(LCA). Then, energy payback time(EPT) and life-cycle $CO_2$ emission rate are estimated based on life-cycle of the PV system. As a result of the estimation, 6 year of EPT and 20 g-C/kWh of $CO_2$ emission rate are obtained. In China, average $CO_2$ emission rate of fossil fuel power generation plant is 260 g-C/kWh. This shows that PV system would be very promising for global environmental issues. For advanced LCA, we need to collect detailed and various data about raw material of PV system.

  • PDF

Analysis of Effects on Topography forP-V system (태양광입지선정을 위한 지형분석방법 소개 및 영향분석)

  • Kim, Young-Deug;Ahn, In-Soo;Kim, Min-Su;Chang, Jeong-Ho;Chang, Moon-Soung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.87-90
    • /
    • 2008
  • In design PV(photovoltaic) system, there are many important factors to consider for best site selection. It is essential to understand to know the amount of sunlight available and how to minimize the shadings. This study presents basic concepts for understanding sun's position and insolation. also gives easy tools for topography analysis. Finally, this study shows some theoretical calculations of power generation losses and disadvantages in economic feasibility.

  • PDF

A Detailed Survey of Solar Energy Resources in East Asia Areas (동아시아 지역의 태양에너지 자원 정밀조사)

  • Jo, Dok-Ki;Kang, Young-Heak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.150-153
    • /
    • 2008
  • Since the solar radiation is the main input for sizing any solar photovoltaic system, it will be necessary to understand and evaluate the solar radiation data. The works presented here are the analysis of solar radiation data for East Asia areas. The data, which consist of the global radiation on horizontal surface, were measured at 16 different stations over the South Korea and were estimated by using satellite at 12 different stations over the North Korea from 1982 to 2004. Also the data over the Japan have been collected for 30 years for the period from 1941 to 1970. The Result of the analysis shows that the annual-average daily global radiation on the horizontal surface is 3.55 kWh/$m^2$. We conclude, based on the analysis, that East Asia areas have sufficient solar energy resources for the photovoltaic power generation system.

  • PDF

A Study on the Thermal Prediction Model cf the Heat Storage Tank for the Optimal Use of Renewable Energy (신재생 에너지 최적 활용을 위한 축열조 온도 예측 모델 연구)

  • HanByeol Oh;KyeongMin Jang;JeeYoung Oh;MyeongBae Lee;JangWoo Park;YongYun Cho;ChangSun Shin
    • Smart Media Journal
    • /
    • v.12 no.10
    • /
    • pp.63-70
    • /
    • 2023
  • Recently, energy consumption for heating costs, which is 35% of smart farm energy costs, has increased, requiring energy consumption efficiency, and the importance of new and renewable energy is increasing due to concerns about the realization of electricity bills. Renewable energy belongs to hydropower, wind, and solar power, of which solar energy is a power generation technology that converts it into electrical energy, and this technology has less impact on the environment and is simple to maintain. In this study, based on the greenhouse heat storage tank and heat pump data, the factors that affect the heat storage tank are selected and a heat storage tank supply temperature prediction model is developed. It is predicted using Long Short-Term Memory (LSTM), which is effective for time series data analysis and prediction, and XGBoost model, which is superior to other ensemble learning techniques. By predicting the temperature of the heat pump heat storage tank, energy consumption may be optimized and system operation may be optimized. In addition, we intend to link it to the smart farm energy integrated operation system, such as reducing heating and cooling costs and improving the energy independence of farmers due to the use of solar power. By managing the supply of waste heat energy through the platform and deriving the maximum heating load and energy values required for crop growth by season and time, an optimal energy management plan is derived based on this.

Microbial Fuel Cells: Recent Advances, Bacterial Communities and Application Beyond Electricity Generation

  • Kim, In-S.;Chae, Kyu-Jung;Choi, Mi-Jin;Verstraete, Willy
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.51-65
    • /
    • 2008
  • The increasing demand for energy in the near future has created strong motivation for environmentally clean alternative energy resources. Microbial fuel cells (MFCs) have opened up new ways of utilizing renewable energy sources. MFCs are devices that convert the chemical energy in the organic compounds to electrical energy through microbial catalysis at the anode under anaerobic conditions, and the reduction of a terminal electron acceptor, most preferentially oxygen, at the cathode. Due to the rapid advances in MFC-based technology over the last decade, the currently achievable MFC power production has increased by several orders of magnitude, and niche applications have been extended into a variety of areas. Newly emerging concepts with alternative materials for electrodes and catalysts as well as innovative designs have made MFCs promising technologies. Aerobic bacteria can also be used as cathode catalysts. This is an encouraging finding because not only biofouling on the cathode is unavoidable in the prolonged-run MFCs but also noble catalysts can be substituted with aerobic bacteria. This article discusses some of the recent advances in MFCs with an emphasis on the performance, materials, microbial community structures and applications beyond electricity generation.