• Title/Summary/Keyword: New Words Detection

Search Result 40, Processing Time 0.026 seconds

A Study on Analysis of Malicious Code Behavior Information for Predicting Security Threats in New Environments

  • Choi, Seul-Ki;Lee, Taejin;Kwak, Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1611-1625
    • /
    • 2019
  • The emergence of new technologies and devices brings a new environment in the field of cyber security. It is not easy to predict possible security threats about new environment every time without special criteria. In other words, most malicious codes often reuse malicious code that has occurred in the past, such as bypassing detection from anti-virus or including additional functions. Therefore, we are predicting the security threats that can arise in a new environment based on the history of repeated malicious code. In this paper, we classify and define not only the internal information obtained from malicious code analysis but also the features that occur during infection and attack. We propose a method to predict and manage security threats in new environment by continuously managing and extending.

A New Endpoint Detection Method Based on Chaotic System Features for Digital Isolated Word Recognition System

  • Zang, Xian;Chong, Kil-To
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.37-39
    • /
    • 2009
  • In the research of speech recognition, locating the beginning and end of a speech utterance in a background of noise is of great importance. Since the background noise presenting to record will introduce disturbance while we just want to get the stationary parameters to represent the corresponding speech section, in particular, a major source of error in automatic recognition system of isolated words is the inaccurate detection of beginning and ending boundaries of test and reference templates, thus we must find potent method to remove the unnecessary regions of a speech signal. The conventional methods for speech endpoint detection are based on two simple time-domain measurements - short-time energy, and short-time zero-crossing rate, which couldn't guarantee the precise results if in the low signal-to-noise ratio environments. This paper proposes a novel approach that finds the Lyapunov exponent of time-domain waveform. This proposed method has no use for obtaining the frequency-domain parameters for endpoint detection process, e.g. Mel-Scale Features, which have been introduced in other paper. Comparing with the conventional methods based on short-time energy and short-time zero-crossing rate, the novel approach based on time-domain Lyapunov Exponents(LEs) is low complexity and suitable for Digital Isolated Word Recognition System.

  • PDF

Detection of Complaints of Non-Face-to-Face Work before and during COVID-19 by Using Topic Modeling and Sentiment Analysis (동적 토픽 모델링과 감성 분석을 이용한 COVID-19 구간별 비대면 근무 부정요인 검출에 관한 연구)

  • Lee, Sun Min;Chun, Se Jin;Park, Sang Un;Lee, Tae Wook;Kim, Woo Ju
    • The Journal of Information Systems
    • /
    • v.30 no.4
    • /
    • pp.277-301
    • /
    • 2021
  • Purpose The purpose of this study is to analyze the sentiment responses of the general public to non-face-to-face work using text mining methodology. As the number of non-face-to-face complaints is increasing over time, it is difficult to review and analyze in traditional methods such as surveys, and there is a limit to reflect real-time issues. Approach This study has proposed a method of the research model, first by collecting and cleansing the data related to non-face-to-face work among tweets posted on Twitter. Second, topics and keywords are extracted from tweets using LDA(Latent Dirichlet Allocation), a topic modeling technique, and changes for each section are analyzed through DTM(Dynamic Topic Modeling). Third, the complaints of non-face-to-face work are analyzed through the classification of positive and negative polarity in the COVID-19 section. Findings As a result of analyzing 1.54 million tweets related to non-face-to-face work, the number of IDs using non-face-to-face work-related words increased 7.2 times and the number of tweets increased 4.8 times after COVID-19. The top frequently used words related to non-face-to-face work appeared in the order of remote jobs, cybersecurity, technical jobs, productivity, and software. The words that have increased after the COVID-19 were concerned about lockdown and dismissal, and business transformation and also mentioned as to secure business continuity and virtual workplace. New Normal was newly mentioned as a new standard. Negative opinions found to be increased in the early stages of COVID-19 from 34% to 43%, and then stabilized again to 36% through non-face-to-face work sentiment analysis. The complaints were, policies such as strengthening cybersecurity, activating communication to improve work productivity, and diversifying work spaces.

A New Method to Detect Inner/Outer Race Bearing Fault Using Discrete Wavelet Transform in Frequency-Domain

  • Ghods, Amirhossein;Lee, Hong-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.63-64
    • /
    • 2013
  • Induction motors' faults detection is almost a popular topic among researchers. Monitoring the output of motors is a key factor in detecting these faults. (Short-time) Fourier, (continuous, discrete) wavelet, and extended Park vector transformations are among the methods for fault detection. One major deficiency of these methods is not being able to detect the severity of faults that carry low energy information, e.g. in ball bearing system failure, there is absolutely no way to detect the severity of fault using Fourier or wavelet transformations. In this paper, the authors have applied the Discrete Wavelet Transform (DWT) frequency-domain analysis to detect bearing faults in an induction motor. In other words, in discrete transform which the output signal is decomposed in several steps and frequency resolution increases considerably, the frequency-band analysis is performed and it will be verified that first of all, fault sidebands become more recognizable for detection in higher levels of decomposition, and secondly, the inner race bearing faults turn out easier in these levels; and all these matter because of eliminating the not-required high energy components in lower levels of decomposing.

  • PDF

A Study on the Defection of Arcing Faults in Transmission Lines and Development of Fault Distance Estimation Software using MATLAB (MATLAB을 이용한 송전선로의 아크사고 검출 및 고장거리 추정 소프트웨어 개발에 관한 연구)

  • Kim, Byeong-Cheon;Park, Nam-Ok;Kim, Dong-Su;Kim, Gil-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.4
    • /
    • pp.163-168
    • /
    • 2002
  • This paper present a new verb efficient numerical algorithm for arcing faults detection and fault distance estimation in transmission line. It is based on the fundamental differential equations describing the transients on a transmission line before, during and alter the fault occurrence, and on the application of the "Least Error Squares Technique"for the unknown model parameter estimation. If the arc voltage estimated is a near zero, the fault is without arc, in other words the fault is permanent fault. If the arc voltage estimated has any high value, the faust is identified as an fault, or the transient fault. In permanent faults case, fault distance estimation is necessary. This paper uses the model of the arcing fault in transmission line using ZnO arrestor and resistance to be implemented within EMTP. One purpose of this study is to build a structure for modeling of arcing fault detection and fault distance estimation algorithm using Matlab programming. In this paper, This algorithm has been designed in Graphic user interface(GUI).

A Real-Time Spatial DSS for Security Camera Image Monitoring

  • Park, Young-Hwan;Lee, Ook
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.413-414
    • /
    • 1998
  • This paper presents a real-time Spatial Decision Support System(SDSS) for security camera image monitoring. Other SDSSs are not real-time systems, i.e., they show the images that are already transformed into data format such as virtual reality. In our system, the image is broadcasted in real-time since the purpose of the security camera needs to do it in real-time. With these real-time images, other systems do not add up anything more; the screen just shows the images from the camera. However in our system, we created a motion detection system so that the supervisor(Judge) of a sec.urity monitoring system does not have to pay attention to it constantly. In other words, we created a judge advising system for the supervisor of the security monitoring system. Most of small objects do not need the supervisor's attention since they could be birds, cats, dogs, etc. if they show up in the screen image. In this new system the system only report the unusual change to the supervisor by calculating the motion and size of objects in the screen. Thus the supervisor can be liberated from the 24-hour concentration duty; instead he/she can be only alerted when the real security threat such as a big moving object like an human intruder appears. Thus this system can be called a real-time Spatial DSS. The utility of this system is proved mathematically by using the concept of entropy. In other words, big objects like human intruders increase the entropy of the screen images significantly therefore the supervisor must be alerted. Thus by proving its utility of the system theoretically, we can claim that our new real-time SDSS is superior to others which do not use our technique.hnique.

  • PDF

A Filtering Method of Malicious Comments Through Morpheme Analysis (형태소 분석을 통한 악성 댓글 필터링 방안)

  • Ha, Yeram;Cheon, Junseok;Wang, Inseo;Park, Minuk;Woo, Gyun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.9
    • /
    • pp.750-761
    • /
    • 2021
  • Even though the replying comments on Internet articles have positive effects on discussions and communications, the malicious comments are still the source of problems even driving people to death. Automatic detection of malicious comments is important in this respect. However, the current filtering method of the malicious comments, based on forbidden words, is not so effective, especially for the replying comments written in Korean. This paper proposes a new filtering approach based on morpheme analysis, identifying coarse and polite morphemes. Based on these two groups of morphemes, the soundness of comments can be calculated. Further, this paper proposes various impact measures for comments, based on the soundness. According to the experiments on malicious comments, one of the impact measures is effective for detecting malicious comments. Comparing our method with the clean-bot of a portal site, the recall is enhanced by 37.93% point and F-measure is also enhanced up to 47.66 points. According to this result, it is highly expected that the new filtering method based on morpheme analysis can be a promising alternative to those based on forbidden words.

The Effect of Focus Representation and Intonational Manipulation in Phoneme Detecting (초점 실현과 운율 조작에 대한 음소지각)

  • Kim, Hee-Seung;Shin, Ji-Young;Kim, Kee-Ho
    • MALSORI
    • /
    • no.60
    • /
    • pp.97-108
    • /
    • 2006
  • The purpose of this study is to observe how Korean listeners detect a target phoneme with 'Focus' represented by prosodic prominence and question-induced semantic emphasis, and with intonational manipulation. According to the automated phoneme detection task using E-Prime, the Korean listeners detected phoneme targets more rapidly when the target-bearing words were in prominence position and in question-induced position. However, the presence of question-induced semantic emphasis reduced the prominence effect, so two effects interacted: when question-induced emphasis were primarily given as a cue, prominence which was given as secondary cue affected less to fine the new information. Besides, the intonation with manipulation was responded to faster than without manipulation.

  • PDF

New Approach for Detecting Leakage of Internal Information; Using Emotional Recognition Technology

  • Lee, Ho-Jae;Park, Min-Woo;Eom, Jung-Ho;Chung, Tai-Myoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4662-4679
    • /
    • 2015
  • Currently, the leakage of internal information has emerged as one of the most significant security concerns in enterprise computing environments. Especially, damage due to internal information leakage by insiders is more serious than that by outsiders because insiders have considerable knowledge of the system's identification and password (ID&P/W), the security system, and the main location of sensitive data. Therefore, many security companies are developing internal data leakage prevention techniques such as data leakage protection (DLP), digital right management (DRM), and system access control, etc. However, these techniques cannot effectively block the leakage of internal information by insiders who have a legitimate access authorization. The security system does not easily detect cases which a legitimate insider changes, deletes, and leaks data stored on the server. Therefore, we focused on the insider as the detection target to address this security weakness. In other words, we switched the detection target from objects (internal information) to subjects (insiders). We concentrated on biometrics signals change when an insider conducts abnormal behavior. When insiders attempt to leak internal information, they appear to display abnormal emotional conditions due to tension, agitation, and anxiety, etc. These conditions can be detected by the changes of biometrics signals such as pulse, temperature, and skin conductivity, etc. We carried out experiments in two ways in order to verify the effectiveness of the emotional recognition technology based on biometrics signals. We analyzed the possibility of internal information leakage detection using an emotional recognition technology based on biometrics signals through experiments.

A Study on the Malware Realtime Analysis Systems Using the Finite Automata (유한 오토마타를 이용한 악성코드 실시간 분석 시스템에 관한 연구)

  • Kim, Hyo-Nam;Park, Jae-Kyoung;Won, Yoo-Hun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.69-76
    • /
    • 2013
  • In the recent years, cyber attacks by malicious codes called malware has become a social problem. With the explosive appearance and increase of new malware, innumerable disasters caused by metaphoric malware using the existing malicious codes have been reported. To secure more effective detection of malicious codes, in other words, to make a more accurate judgment as to whether suspicious files are malicious or not, this study introduces the malware analysis system, which is based on a profiling technique using the Finite Automata. This new analysis system enables realtime automatic detection of malware with its optimized partial execution method. In this paper, the functions used within a file are expressed by finite automata to find their correlation, and a realtime malware analysis system enabling us to give an immediate judgment as to whether a file is contaminated by malware is suggested.