• Title/Summary/Keyword: New Surface Shape

Search Result 557, Processing Time 0.034 seconds

A System for Rapid Design and Manufacturing of Custom-Tailored Shoes

  • Park, Sang-Kun;Lee, Kun-Woo;Kim, Jong-Won;Park, Jong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.675-689
    • /
    • 2000
  • Rapid design and production techniques are indispensable for the custom-made production systems. For manufacturing custom-made shoes, the shoelast should be designed rapidly from the individual foot model. In this paper, we develop an integrated system for rapid design and manufacturing of custom-tailored shoes. The foot shape measurement sub-system allows scanning a standard shoelast and an individual foot and then extracts the three-dimensional crosssectional data of the shoelast and the human foot shape from the captured image data. The shoelast design sub-system uses the scanned data to design new customized shoelast curves or surfaces with the heeling and mixing algorithms built in this system. The pattern design subsystem provides a method, which transforms a shoe-upper surface designed by a stylist into a flat-pattern that can be manufactured. We also export the surface model to an NC machine to manufacture the physical shoelast model.

  • PDF

자기공명 영상촬영을 위한 임의로 선택된 모양의 최소인덕턴스 경사자계코일의 설계 (Minimum-Inductance MRI Gradient Coil Design with Arbitrarily-Selected Shape)

  • Lee, J.K.;Yang, Y.J.;Yi, Y.;Cho, Z.H.;Oh, C.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1994 no.05
    • /
    • pp.85-87
    • /
    • 1994
  • This paper proposes a new inductance minimization scheme for a gradient system of arbitrarily selected shape. Although it is important to minimize the gradient coil inductance to reduce the current switching time, such minimization has been possible only for cylindrical or parallel biplanar coils. By using small current loops on arbitrarily selected surface as optimization elements, the inductance of the whole circuit can be minimized using the loop's self- and mutual-inductances. Wire positions can be easily derived from the loop current distribution. Preliminary studies for the design of x-directional surface gradient coil show the utility of tile proposed gradient coil design scheme.

  • PDF

Study on Optimization for 2-D Curved Surface Forming by Multi-point Dieless Elasto-forming (다점 무금형 2차원 곡면성형 최적화 연구)

  • Kang D. H.;Park J. W.;Kim T. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.66-69
    • /
    • 2004
  • A new concept of multi-point dieless elasto-forming method has been developed to make various shape of curved surface without conventional dies. The developed dieless elasto-forming system consists of discrete punches controlled by servo motors and various kinds of elastomers(rubber and foam). To predict optimal position of punch elements, DTF(deformation transfer function) was introduced, and FEM analysis was carried out. The optimal arrangement of elastomer was selected considering characteristics of each elastomer, and a desired concave shape was formed. The experimental results were consistent with the numerical ones.

  • PDF

Development and Design of Variable Lamination Manufacturing (VLM) Process by Using Expandable Polystyrene Foam (발포 폴리스티렌 폼을 이용한 가변 적층 쾌속 조형 공정 설계 및 개발)

  • 안동규;이상호;양동열;신보성;박승교;이용일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.759-762
    • /
    • 2000
  • Rapid Prototyping (RP) techniques have their unique characteristics according to the working principles: stair-stepped surface of parts due to layer-by-layer stacking, low build speed caused by line-by-line solidification to build one layer, and additional post processing to improve surface roughness, so it is required very high cost to introduce and to maintain RP apparatus. The objective of this study is to develop and design a new RP process, Variable Lamination Manufacturing using expandable polystyrene foam sheet as part material (VLM-S), which can make up for the disadvantage of existing techniques, and to develop an apparatus to implement the process. In order to examine the possibility of practical utilization of the proposed VLM-S process for prototyping of a general three-dimensional shape, an auto-shift lever knob and a pyramid shape were fabricated.

  • PDF

Optimum shape and process design of single rotor equipment for its mixing performance using finite volume method

  • Kim, Nak-Soo;Lee, Jae-Yeol
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.289-297
    • /
    • 2009
  • We numerically analyzed flow characteristics of the polymer melt in the screw equipment using a proper modeling and investigated design parameters which have influence on the mixing performance as the capability of the screw equipment. We considered the non-Newtonian and non-isothermal flow in a single rotor equipment to investigate the mixing performance with respect to screw dimensions as shape parameter of the single rotor equipment and screw speed as process parameter. We used Bird-Carreau-Yasuda model as a viscous model of the polymer melt and the particle tracking method to investigate the mixing performance in the screw equipment and considered four mixing performance indexes: residence time distribution, deformation rate, total strain and particle standard deviation as a new mixing performance index. We compared these indexes to determine design parameters and object function. On basis of the analysis results, we carried out the optimal design by using the response surface method and design of experiments. In conclusion, the differences of results between the optimal value and numerical analysis are about 5.0%.

Active earth pressure behind rigid retaining wall rotating about the top (정점을 중심으로 회전하는 강성옹벽에 작용하는 주동토압)

  • Paik Kyu-Ho;Sagong Myung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.1107-1112
    • /
    • 2004
  • For a rigid retaining wall with rough face, the practical shape of failure surface and arching effect in the backfill must be considered to acquire accurate magnitude and non-linear distribution of active earth pressure acting on the rigid retaining wall. In this study, a new formulation for calculating the active earth pressure on a rough rigid retaining wall rotating about the top is proposed considering the practical shape of non-linear failure surface and arching effects. Accuracy of the proposed equation is checked through comparisons of calculations from the proposed equations with existing model test results. The comparisons show that the proposed equations produce satisfactory results.

  • PDF

Interactive Control of Geometric Shape Morphing based on Minkowski Sum (민코프스키 덧셈 연산에 근거한 기하 도형의 모핑 제어 방법)

  • Lee, J.-H.;Lee, J. Y.;Kim, H.;Kim, H. S.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.4
    • /
    • pp.269-279
    • /
    • 2002
  • Geometric shape morphing is an interesting geometric operation that interpolates two geometric shapes to generate in-betweens. It is well known that Minkowski operations can be used to test and build collision-free motion paths and to modify shapes in digital image processing. In this paper, we present a new geometric modeling technique to control the morphing on geometric shapes based on Minkowski sum. The basic idea develops from the linear interpolation on two geometric shapes where the traditional algebraic sum is replaced by Minkowski sum. We extend this scheme into a Bezier-like control structure with multiple control shapes, which enables the interactive control over the intermediate shapes during the morphing sequence as in the traditional CAGD curve/surface editing. Moreover, we apply the theory of blossoming to our control structure, whereby our control structure becomes even more flexible and general. In this paper, we present mathematical models of control structure, their properties, and computational issues with examples.

Study on the new development of combined electrochemical processes using pulse current (마이크로 펄스 전해 복합가공에 관한 연구)

  • 박정우;이은상;문영훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.918-921
    • /
    • 2002
  • Some investigators who have tried to achieve the highly smooth surface finish using electrochemical processes have reported that high current density produced lustrous surfaces while the opposite conditions produced a passive layer and had a tendency to produce a black surface. However, processing at a low current density may produce a non-lustrous surface but the improvement of dimensional accuracy of the surface is significant. The surface with pulse process was a bit more lustrous than with continuous current but the black passive layer still could be found at grooved surface. There are two ways to achieve highly smooth surface finish. One is brushing it with a brush the other is electrochemical machining (ECM) with high current. The former method is the most common polishing practice, but not only may the surface obtained differ from operator to operator, but precision smooth surface on micro grooves are difficult to obtain. The latter one recently has been used to produce a highly smooth surface after EDM process. However, the material removal rate in ECM with high current is relatively high. Hence the original shape of the micro grooves, which was formed by electrochemical micro-machining (EMM) process, may be destroyed. In this study, an electrochemical polishing process using pulse current is adopted as a possible alternative process when micro grooves formed by EMM process should be polished. Mirror-like micro grooves with lustrous and smooth surface can be produced electrochemically with pulse current because the voltage and current used can be lower than the case of continuous current. This study will discuss the accurate control of physical and electrical conditions so as to achieve mirror-like micro grooves with lustrous and smooth surface without destroying the original shape of micro grooves.

  • PDF

Effects of Electrospinning Parameters on the Fiber Formation and Application (전기방사 조건에 따른 나노섬유상의 구조 및 응용)

  • RYU, HO SUK;PARK, JIN SOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.1
    • /
    • pp.71-80
    • /
    • 2018
  • Electrospinning is a versatile technique that utilizes electrostatic forces to produce very thin and fine fibers of polymer ranging from submicron to nanometer scale. The technique can be applied to fibers of a various polymer types. Working parameters in the electrospinning are very important to understand not only the nature of electrospinning but also the conversion of polymer solutions into nanofibers through electrospinning. Those parameters in the electrospinning can be broadly divided into three parts. The first parameter is solution parameters such as molecular weight of polymer, concentration, viscosity, surface tension and conductivity/surface charge density of solution. The second parameter is process such as voltage, distance between the collector and the tip of the syringe, shape of collectors, flow rate. The third parameter is ambient parameters such as humidity and temperature. Fibers which made by electrospinning with working parameters are applied for various fields according to shape such as medical, cloth, photodiode, a sensor technology, catalyst, filtration, battery etc.

Simulative consideration for w-shaped d.i. diesel combustion chamber system using spray wall impaction (분무충돌을 이용한 w-형 직접분사식 디젤연소실에 대한 계산적 고찰)

  • Park, K.
    • Journal of ILASS-Korea
    • /
    • v.2 no.2
    • /
    • pp.8-15
    • /
    • 1997
  • Combustion chamber systems using spray impinged on walls have been studied for improving combustion characteristics in high speed direct injection diesel engines. The fuel spray injected in a small combustion chamber may be easily impinged and deposited on the wall. The fuel deposit has been considered as the cause for unburned emission due to difficulty of fuel-air mixing. In this paper w-shaped combustion chamber which has four raised pips on the side wall is introduced and discussed by comparing with conventional chamber with no pips. The computer code employing new spray-wall interaction model in general non-orthogonal grids is used in here. The model is applied into the new chamber shape with raised pips. In this chamber system four-hole nozzle is used, and the sprays injected from the each hole impact on lands raised from the chamber wall surface. After impacting, the sprays break up into much smaller drops and distribute over all the chamber space, instead of distributing just near the wall surface in conventional omega-shape. The results showed the potential of the w-shaped chamber employing pips for dispersing droplets so as tn avoid the fuel deposit regions.

  • PDF