• 제목/요약/키워드: New Mutant

Search Result 229, Processing Time 0.025 seconds

Study on Environmental Risk Assessment for Potential Effect of Genetically Modified Nicotiana benthamiana Expressing ZGMMV Coat Protein Gene

  • Kim, Tae-Sung;Yu, Min-Su;Koh, Kong-Suk;Oh, Kyoung-Hee;Ahn, Hong-Il;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • v.22 no.4
    • /
    • pp.353-359
    • /
    • 2006
  • Transgenic Nicotiana benthamiana plants harboring the coat protein(CP) gene of Zucchini green mottle mosaic virus(ZGMMV) were chosen as a model host for the environmental risk assessment of genetically modified plants with virus resistance. This study was focused on whether new virus type may arise during serial inoculation of one point CP mutant of ZGMMV on the transgenic plants. In vitro transcripts derived from the non-functional CP mutant were inoculated onto the virus-tolerant and -susceptible transgenic N. benthamiana plants. Any notable viral symptoms that could arise on the inoculated transgenic host plants were not detected, even though the inoculation experiment was repeated a total of ten times. This result suggests that potential risk associated with the CP-expressiing transgenic plants may not be significant. However, cautions must be taken as it does not guarantee environmental safety of these CP-mediated virus-resistant plants, considering the limited number of the transgenic plants tested in this study. Further study at a larger scale is needed to evaluate the environmental risk that might be associated with the CP-mediated virus resistant plant.

Increasing the Triacylglycerol Content in Dunaliella tertiolecta through Isolation of Starch-Deficient Mutants

  • Sirikhachornkit, Anchalee;Vuttipongchaikij, Supachai;Suttangkakul, Anongpat;Yokthongwattana, Kittisak;Juntawong, Piyada;Pokethitiyook, Prayad;Kangvansaichol, Kunn;Meetam, Metha
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.854-866
    • /
    • 2016
  • The production cost of biodiesel from microalgae is still not competitive, compared with that of petroleum fuels. The genetic improvement of microalgal strains to increase triacylglycerol (TAG) accumulation is one way to reduce production costs. One of the most promising approaches is the isolation of starch-deficient mutants, which have been reported to successfully increase TAG yields. To date, such a stable mutant is not available in an oleaginous marine microalga, despite several advantages of using marine species for biodiesel production. Algae in the genus Dunaliella are known to tolerate high salt concentration and other environmental stresses. In addition, the cultivation processes for large-scale outdoor commercialization have been well established for this genus. In this study, Dunaliella tertiolecta was used to screen for starch-deficient mutants, using an iodine vapor-staining method. Four out of 20,016 UV-mutagenized strains showed a substantial reduction of starch content. A significantly higher TAG content, up to 3-fold of the wild-type level, was observed in three of the mutants upon induction by nitrogen depletion. The carotenoid production and growth characteristics of these mutants, under both normal and oxidative stress conditions, were not compromised, suggesting that these processes are not necessarily affected by starch deficiency. The results from this work open up new possibilities for exploring Dunaliella for biodiesel production.

Cell Fusion Between Xylose Fermenting Yeast and Xylanase Secreting Yeast (Xylanase 분비효모와 Xylose 발효효모의 Protoplast Fusion)

  • 김남순;배명애;서정훈
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.2
    • /
    • pp.88-93
    • /
    • 1989
  • To improve a new yeast strain capable of converting xylan to ethanol directly, we tried protoplast fusion between xylose fermenting yeast (Candida sp. X-6-41) and xylan assimilating yeast (Crypto-coccus sp. XB-33), finally selected the most promising two fusants (XFU-1 and XFU-2). As the optimum conditions for protoplast formation, the yeast cells were cultured to exponential phase in YPD and YPX containing 0.6M KCI, respectively, and then treated with zymolyase (0.25mg/$m\ell$), cellulase(4mg/$m\ell$) and 100mM 2-mercaptoethanol at pH 8 and 3$0^{\circ}C$. The protoplasts of parental auxotrophs were fused in the presence of 20mM CaCl$_2$and 40% polyethylene glycol(M.W.4000). The physiological and morphological characteristics of the fusants, such as assimilation of carbon sources, cell size, growth rate, xylanase activity and xylan fermentation ability were investigated. Xylanase activity of fusants that cultured in chemically minimal medium was higher than that of fusants that cultured in completed medium, because xylanase producing activity of xylose fermenting yeast(X-6-41) was inhibited by isoleucine.

  • PDF

Mechanisms of Myotonic Dystrophies 1 and 2

  • Lubov, Timchenko
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • Myotonic Dystrophies type 1 and 2 (DM1/2) are neuromuscular disorders which belong to a group of genetic diseases caused by unstable CTG triplet repeat (DM1) and CCTG tetranucleotide repeat (DM2) expansions. In DM1, CTG repeats are located within the 3' untranslated region of myotonin protein kinase (DMPK) gene on chromosome 19q. DM2 is caused by expansion of CCTG repeats located in the first intron of a gene coding for zinc finger factor 9 on chromosome 3q. The CTG and CCTG expansions are located in untranslated regions and are expressed as pre-mRNAs in nuclei (DM1 and DM2) and as mRNA in cytoplasm (DM1). Investigations of molecular alterations in DM1 discovered a new molecular mechanism responsible for this disease. Expansion of un-translated CUG repeats in the mutant DMPK mRNA disrupts biological functions of two CUG-binding proteins, CUGBP and MNBL. These proteins regulate translation and splicing of mRNAs coding for proteins which play a key role in skeletal muscle function. Expansion of CUG repeats alters these two stages of RNA metabolism in DM1 by titrating CUGBP1 and MNBL into mutant DMPK mRNA-protein complexes. Mouse models, in which levels of CUGBP1 and MNBL were modulated to mimic DM1, showed several symptoms of DM1 disease including muscular dystrophy, cataracts and myotonia. Mis-regulated levels of CUGBP1 in newborn mice cause a delay of muscle development mimicking muscle symptoms of congenital form of DM1 disease. Since expansion of CCTG repeats in DM2 is also located in untranslated region, it is predicted that DM2 mechanisms might be similar to those observed in DM1. However, differences in clinical phenotypes of DM1 and DM2 suggest some specific features in molecular pathways in both diseases. Recent publications suggest that number of pathways affected by RNA CUG and CCUG repeats could be larger than initially thought. Detailed studies of these pathways will help in developing therapy for patients affected with DM1 and DM2.

Directed Evolution of Beta-galactosidase from Escherichia coli into Beta-glucuronidase

  • Xiong, Ai-Sheng;Peng, Ri-He;Zhuang, Jing;Liu, Jin-Ge;Xu, Fang;Cai, Bin;Guo, Zhao-Kui;Qiao, Yu-Shan;Chen, Jian-Min;Zhang, Zhen;Yao, Quan-Hong
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.419-425
    • /
    • 2007
  • In vitro directed evolution through DNA shuffling is a powerful molecular tool for creation of new biological phenotypes. E. coli $\beta$-galactosidase and $\beta$-glucuronidase are widely used, and their biological function, catalytic mechanism, and molecular structures are well characterized. We applied an in vitro directed evolution strategy through DNA shuffling and obtained five mutants named YG6764, YG6768, YG6769, YG6770 and YG6771 after two rounds of DNA shuffling and screening, which exhibited more $\beta$-glucuronidase activity than wild-type $\beta$-galactosidase. These variants had mutations at fourteen nucleic acid sites, resulting in changes in ten amino acids: S193N, T266A, Q267R, V411A, D448G, G466A, L527I, M543I, Q626R and Q951R. We expressed and purified those mutant proteins. Compared to the wild-type protein, five mutant proteins exhibited high $\beta$-glucuronidase activity. The comparison of molecular models of the mutated and wildtype enzymes revealed the relationship between protein function and structural modification.

Fine localization of a new cataract locus, Kec, on mouse chromosome 14 and exclusion of candidate genes as the gene that causes cataract in the Kec mouse

  • Kang, Min-Ji;Cho, Jae-Woo;Kim, Jeong-Ki;Kim, Eun-Min;Kim, Jae-Young;Cho, Kyu-Hyuk;Song, Chang-Woo;KimYoon, Sun-Joo
    • BMB Reports
    • /
    • v.41 no.9
    • /
    • pp.651-656
    • /
    • 2008
  • A mouse with cataract, Kec, was generated from N-ethyl-N-nitrosourea (ENU) mutagenesis. Cataract in the Kec mouse was observable at about 5 weeks after birth and this gradually progressed to become completely opaque by 12 weeks. Dissection microscopy revealed that vacuoles with a radial or irregular shape were located primarily in the cortex of the posterior and equatorial regions of the lens. At the late stage, the lens structure was distorted, but not ruptured. This cataract phenotype was inherited in an autosomal recessive manner. We performed a genetic linkage analysis using 133 mutant and 67 normal mice produced by mating Kec mutant (BALB/c) and F1 (C57BL/6 $\times$ Kec) mice. The Kec locus was mapped to the 3 cM region encompassed by D14Mit34 and D14Mit69. In addition we excluded coding sequences of 9 genes including Rcbtb2, P2ry5, Itm2b, Med4, Nudt15, Esd, Lcp1, Slc25a30, and 2810032E02Rik as the candidate gene that causes cataract in the Kec mouse.

Characterization of flavonoids specific gene expression in the petals of Dianthus caryophyllus (carnation) (카네이션 (Dianthus caryophillus)의 색소 발현체계 분석)

  • Hur, Suel-Hye;Ahn, Byung-Joon;Joung, Hyang-Young;Hyung, Nam-In;Min, Byung-Whan
    • Journal of Plant Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.415-422
    • /
    • 2009
  • This study aimed to develop carnation cultivars with new coloring system. We used four genes of Petunia hybrida - chalcone synthase (CHS), flavanone 3-hydroxylase (FHT), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS) - as probes, in order to isolate four genes from carnations (Dianthus Caryophyllus). The isolated genes were used as probes in order to select mutants out of collected carnations, using Northern blot analysis. The Northern blot analysis revealed 10 DFR mutants - Gumbyul, Eunbyul, Ballatyne, Crystal, Eugenia, Koreno, Imp. White Sim, West Crystal, White Alpine, and White Charotte. Six among the selected 10 cultivarswere excluded from the target cultivars, because Eugenia, Imp. White Sim, and White Alpine were proved to be double mutants of DFR and ANS, Koreno was considered to be a double mutant of DFR and CHS, and Gumbyul and Ballatyne were proved to be double mutants of DFR and CHI (Chalcone isomerase). Consequently, we selected five DFR mutants, including Virginie, which was already selected as a DFR mutant. Finally, we measured DFR activities in order to confirm the selection, and the results showed that all of the five cultivars - Eunbyul, Crystal, West Crystal, White Charotte, and Virginie - had got no DFR activity.

Identification of the+1 Ribosomal Frameshifting Site of LRV1-4 by Mutational Analysis

  • Kim Se Na;Choi Jung Ho;Park Min Woo;Jeong Sun Joo;Han Kyung Sook;Kim Hong Jin
    • Archives of Pharmacal Research
    • /
    • v.28 no.8
    • /
    • pp.956-962
    • /
    • 2005
  • Leishmania virus (LRV)1-4 has been reported to produce a fusion of ORF2 and ORF3 via a programmed +1 frameshift in the region where ORF2 and ORF3 overlap (Lee et a/., 1996). However, the exact frameshift site has not been identified. In this study, we compared the frameshift efficiency of a 259bp (nt. 2565-2823), frameshift region of LRV1-4, and the 71 bp (nt. 2605-2678) sub-region where ORF2 and ORF3 overlap. We then predicted the frameshift site using a new computer program (Pseudoviewer), and finally identified the specific region associated with the mechanism of the LRV1-4's+1 frameshift by means of a mutational analysis based on the predicted structure of LRV1-4 RNA. The predicted structure was confirmed by biochemical analysis. In order to measure the frameshift efficiency, constructs that generate luciferase without a frameshift or with a+1 frameshift, were generated and in vitro transcription/translation analysis was performed. Measurements of the luciferase activity generated, showed that the frameshift efficiency was about $1\%$ for both the 259bp (LRV1-4 259FS) and 71 bp region (LRV1-4 71FS). Luciferase activity was strongly reduced in a mutant (LRV1-4 NH: nt. 2635-2670) with the entire hairpin deleted and in a mutant (LRV1-4 NUS: nt. 2644-2659) with the upper stem of the hairpin deleted. These results indicate that the frameshift site in LRV1-4's is in the 71 bp region where ORF2 and ORF3 overlap, and that nt. 2644-2659 (the upward hairpin stem) playa key role in generating the +1 frameshift.

Role of Oxidative Stress and Mitochondria in Parkinson's Disease

  • Jin, Son-Hyeung
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2007.04a
    • /
    • pp.147-153
    • /
    • 2007
  • Central to developing new treatment strategies for late onset sporadic Parkinson's disease (PD) and early onset familial PD is resolving the enigma of the specific vulnerability exhibited by substantia nigra dopamine (DA) neurons despite multiple risk factors. Neuropathological evidence from both human and experimental models of PD firmly supports a significant role for oxidative stress (OS) and mitochondrial dysfunction in the death of nigral DA neurons. Largely unknown are the genes underlying selective susceptibility of nigral DA neuron to OS and mitochondrial dysfunction and how they effect nigral DA cell death. To overcome the paucity of nigral DA neurons as well as the dilution effect of non-DA cells in brain tissues, we have developed wild type DA cell line model, SN4741 and mutant DJ-1 (-/-) DA cells, appropriate for microarray analysis and differential mitochondrial proteomics. Mutations in the DJ-1 gene (PARK7), localized in cytoplasm and mitochondria, cause autosomal recessive early onset PD. Through microarray analysis using SN4741 cells followed by validation tests, we have identified a novel phylogenically conserved neuroprotective gene, Oxi-a, which is specifically expressed in DA neurons. The knockdown of the gene dramatically increased vulnerability to as. Importantly as down-regulated the expression level of the gene and recovery of its expression via transient transfection exerted significant neuroprotection against as insult. We also have identified altered expression of mitochondrial proteins and other familial PD genes in DJ-1 (-/-) mutant cells by differential mitochondrial proteomics. In DJ-1 (-/-) cells the knockdown of the other familial PD genes (Parkin and PINK1) dramatically increased susceptibility to as. Thus, further functional characterization of the Oxi-$\alpha$ gene family and the mitochondrial alteration in the DJ-1 (-/-) cell model will provide the rationale for the neuroprotective therapy against both sporadic and familial PD.

  • PDF

Mutagen4J: Effective Mutant Generation Tool for Java Programs (Mutagen4J: 효과적인 Java 프로그램 변이 생성 도구)

  • Jeon, Yiru;Kim, Yunho;Hong, Shin;Kim, Moonzoo
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.974-982
    • /
    • 2016
  • Mutation analysis (or software mutation analysis) generates variants of a target program by injecting systematic code changes to the target program, and utilizes the variants to analyze the target program behaviors. Effective mutation analyses require adequate mutation operators that generate diverse variants for use in the analysis. However, the current mutation analysis tools for Java programs have limitations, since they support only limited types of mutation operators and do not support recent language features such as Java8. In this study, we present Mutagen4J, a new mutant generation tool for Java programs. Mutagen4J additionally supports mutation operators recently shown to generate various mutants and fully supports recent Java language features. The experimental results show that Mutagen4J generates useful mutants for analyses 2.3 times more than the existing Java mutation tools used for the study.