• 제목/요약/키워드: New Biopolymer

검색결과 45건 처리시간 0.022초

Laboratory triaxial test behavior of xanthan gum biopolymer-treated sands

  • Lee, Sojeong;Im, Jooyoung;Cho, Gye-Chun;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • 제17권5호
    • /
    • pp.445-452
    • /
    • 2019
  • Gel-type biopolymers have recently been introduced as environmentally friendly soil binders and have shown substantial strengthening effects in laboratory experimental programs. Although the strengthening effects of biopolymer-treated sands have been verified in previous direct shear tests and uniaxial compression tests, there has been no attempt to examine shear behavior under different confining stress conditions. This study therefore aimed to investigate the strengthening effects of biopolymer-treated sand using laboratory triaxial testing with a focus on confining pressures. Three representative confining pressure conditions (${\sigma}_3=50kPa$, 100 kPa, and 200 kPa) were tested with varying biopolymer contents ($m_{bp}/m_s$) of 0.5%, 1.0%, and 2.0%, respectively. Based on previous studies, it was assumed that biopolymer-treated sand is susceptible to hydraulic conditions, and therefore, the experiments were conducted in both a hydrated xanthan gum condition and a dehydrated xanthan gum condition. The results indicated that the shear resistance was substantially enhanced and there was a demonstrable increase in cohesion as well as the friction angle when the biopolymer film matrix was comprehensively developed. Accordingly, it can be concluded that the feasibility of the biopolymer treatment will remain valid under the confining pressure conditions used in this study because the resisting force of the biopolymer-treated soil was higher than that in the untreated condition, regardless of the confining pressure.

Strength and durability characteristics of biopolymer-treated desert sand

  • Qureshi, Mohsin U.;Chang, Ilhan;Al-Sadarani, Khaloud
    • Geomechanics and Engineering
    • /
    • 제12권5호
    • /
    • pp.785-801
    • /
    • 2017
  • Biopolymer treatment of geomaterials to develop sustainable geotechnical systems is an important step towards the reduction of global warming. The cutting edge technology of biopolymer treatment is not only environment friendly but also has widespread application. This paper presents the strength and slake durability characteristics of biopolymer-treated sand sampled from Al-Sharqia Desert in Oman. The specimens were prepared by mixing sand at various proportions by weight of xanthan gum biopolymer. To make a comparison with conventional methods of ground improvement, cement treated sand specimens were also prepared. To demonstrate the effects of wetting and drying, standard slake durability tests were also conducted on the specimens. According to the results of strength tests, xanthan gum treatment increased the unconfined strength of sand, similar to the strengthening effect of mixing cement in sand. The slake durability test results indicated that the resistance of biopolymer-treated sand to disintegration upon interaction with water is stronger than that of cement treated sand. The percentage of xanthan gum to treat sand is proposed as 2-3% for optimal performance in terms of strength and durability. SEM analysis of biopolymer-treated sand specimens also confirms that the sand particles are linked through the biopolymer, which has increased shear resistance and durability. Results of this study imply xanthan gum biopolymer treatment as an eco-friendly technique to improve the mechanical properties of desert sand. However, the strengthening effect due to the biopolymer treatment of sand can be weakened upon interaction with water.

Novel Cationic Microbial Polyglucosamine Biopolymer from New Enterobacter sp. BL-2 and Its Bioflocculation Efficacy

  • SON MI-KYUNG;SHIN HYUN-DONG;HUH TAE-LIN;JANG JIN-HO;LEE YONG-HYUN
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권3호
    • /
    • pp.626-632
    • /
    • 2005
  • A new bacterium BL-2 excreting a novel cationic polyglucosamine biopolymer was isolated from the spoiled leaves of Chinese cabbage and identified as Enterobacter sp. BL-2. The isolated Enterobacter sp. BL-2 was cultivated in pH-stat fed-batch culture using acetic acid as the feeding stock at pH 8.0, resulting in 17.11 g/l of cells and 1.53 g/l of an extracellular biopolymer after 72 h. The excreted biopolymer was purified by a three-step procedure, involving ethanol precipitation and deproteinizations, to a nearly homogeneous state, and its molecular weight was found to be 106 kDa. It was composed of glucosamine, rhamnose, and galactose at a molar ratio of 86.4:1.6:1.0, respectively, indicating a rarely found novel high-glucosamine-containing biopolymer. The FT-IR and $^{13}C-NMR$ spectra of the novel cationic polyglucosamine biopolymer PGB-l revealed a close identity with chitosan from crab shell. It can effectively flocculate various suspended solids, including kaolin clay, $Ca(OH)_2,\;Al_{2}O_3$, active carbon, microbial cells, and acidic dyes.

New Extracellular Biopolymer Produced by Methylobacterium organophilum from Methanol (Methylobacterium organophilum에 의한 메탄올로부터 생성되는 새로운 생물고분자)

  • Choi, Joon H.;Lee, Un T.;Kim, Jung H.;Rhee, Joon S.
    • Microbiology and Biotechnology Letters
    • /
    • 제17권4호
    • /
    • pp.397-402
    • /
    • 1989
  • A new extracellular biopolymer was produced by Methylobacterium organophilum from methanol as a sole carbon and energy source. The purified biopolymer was found to have a high molecular weight of about 4-5$\times$10$^6$ dalton and contained 66% (w/w) of carbohydrate but no polyhydro xybutyrate. Other organic constituents were consisted of protein, pyruvic acid, uronic acid, and acetic acid, whereas content of inorganic ash was 22%. Based on the chemical analysis of the biopolymer by TLC method, the polymer was consisted of glucose, galactose, and mannose with an approximate molar ratio of 2:3:2. The biopolymer solution showed a characteristics of pseudoplastic non-Newtonian fluid. The viscosity of the 1%-biopolymer solution was found to be 18,000 cp at a shear rate, 1 sec$^{-1}$, which was almost 10 times higher than that of a commercial xanthan gum.

  • PDF

Production Conditions and Characterization of the Exo-biopolymer Produced by Submerged Cultivation of Ganoderma lucijum Mycelium (영지(Ganoderma lucidum) 균사체의 액체배양에 의한 세포외 생물고분자의 생산조건과 특성)

  • Lee, Shin-Young;Kang, Tae-Su
    • Microbiology and Biotechnology Letters
    • /
    • 제24권1호
    • /
    • pp.111-118
    • /
    • 1996
  • For the screening and the development of the new bio-material, cultural conditions for the exo-biopolymer (EBP) production throught the submerged cultivation of Ganoderma lucidum mycelium were investigated. Also, the fractionations and the purifications of the exo-biopolymer were carried out and the chemical compositions of the exo-biopolymer were examined. The optimal culture conditions for the exo-biopolymer production were pH 5.0, 30$^{\circ}C$ and 100 rpm of agitation speed in the medium containing of 5% (w/v) glucose, 0.5%(w/v) yeast extract, 0.1% (w/v) ($(NH_4)_2HPO_4$, and 0.05% (w/v) $KH_2PO_4$. In the flask cultivation for 7 days under these conditions, the concentration of the maximum exo-biopolymer and the cell mass were 15.4g/l and 18.8g/l, respectively. The specific growth rate was 0.039 $hr^{-1}$. In addition, the substrate consumption rate, and the exo-biopolymer production rate were 0.043$gg^{-1}$$hr^{-1}$ and 0.025$gg^{-1}$$hr^{-1}$, respectively. The exo-biopolymer was fractionated into BWS (water soluble exo-biopolymer) and BWI (water insoluble exo-biopolymer) by the water extraction, and the sugar contents of two fractions were higher than 97% (based on dry basis). The components sugar of BWS and BWI fractions were glucose, galactose, mannose, xylose, and fucose. Their molar ratios were 3.6:1.5:2.1:0.5: trace and 2.9:3.1:2.0:1.6:0.3, respectively.

  • PDF

Improvement of the geotechnical engineering properties of dune sand using a plant-based biopolymer named serish

  • Shabani, Khosro;Bahmani, Maysam;Fatehi, Hadi;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • 제29권5호
    • /
    • pp.535-548
    • /
    • 2022
  • Recently, the construction industry has focused on eco-friendly materials instead of traditional materials due to their harmful effects on the environment. To this end, biopolymers are among proper choices to improve the geotechnical behavior of problematic soils. In the current study, serish biopolymer is introduced as a new binder for the purpose of sand improvement. Serish is a natural polysaccharide extracted from the roots of Eremurus plant, which mainly contains inulins. The effect of serish biopolymer on sand treatment has been investigated through performing unconfined compressive strength (UCS), California bearing ratio (CBR), as well as wind erosion tests. The results demonstrated that serish increased the compressive strength of dune sand in both terms of UCS and CBR. Also, wind erosion resistance of the sand was considerably improved as a result of treatment with serish biopolymer. A microstructural study was also conducted via SEM images; it can be seen that serish coated the sand particles and formed a strong network.

Purification and Characteristics of New Biopolymer Produced by Alkaline-Tolerant Bacillus sp. (알칼리 내성 Bacillus sp.가 생산하는 생물 고분자의 정제 및 특성)

  • Lee, Shin-Young;Won, Suk;Kang, Tae-Su;Lee, Myong-Yurl;Lew, In-Deok;Kim, Jin-Young
    • KSBB Journal
    • /
    • 제13권5호
    • /
    • pp.554-560
    • /
    • 1998
  • Biopolymer from alkaline-tolerant Bacillus so. was purified, and its physico-chemical and structural properties were investigated. Crude biopolymer, precipitated by acetone from culture broth was fractionated into two fractions by gel chromatography on Sephadex G-200. Among two fractions, one fraction(PS I), which an acidic biopolymer precipitated by the CPC(cetylpyridinium chloride) treatment was studied further. PS I fraction had carboxyl groups and was positive at color reaction of sugar. PS I fraction also showed UV absorbance at 190-225nm. The purified acidic biopolymer was composed of 4% glucose, 8% glucosamine and 88% glutamic acid. Sugar components of the purified acidic biopolymer seemed to be linked to PGA(polyglutamic acid) which existed in the from of ${\gamma}$-peptide bond. By the results of Smith degradation of sugar components, glucose and glucosamine was bound by 1,3 glocosidic linkage. Therefore, this biopolymer was a glycopeptide, oligosaccaride ${\gamma}$-PGA. We concluded that the equivalent weight and the molecular weight of this biopolymer were estimated as about 171 and 5x105 dalton, respectively.

  • PDF

Properties of Biopolymer YU-122 from Metarrhizium anisopliae (Metschn.) Sorok (Metarrhizium anisopliae (Metschn.) Sorok이 생산하는 Biopolymer YU-122의 물리, 화학적 특성)

  • Choi, Yong-Suk;Ohk, Seung-Ho;Yu, Ju-Hyun;Bai, Dong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • 제29권1호
    • /
    • pp.138-144
    • /
    • 1997
  • A new biopolymer YU-122 from Metarrhizium anisopliae (Metschn.) Sorok consisting of glucose and galactose was tested for its physical properties and flow behavior characteristics. Xanthan gum showed slightly higher viscosity than biopolymer YU-122. Viscosity of biopolymer YU-122 at various pHs and temperatures was also tested. The viscosity of biopolymer YU-122 was very stable up to pH 11 and $60^{\circ}C$, indicating that it has a great possibility for the application such as food additives, emulsifier, and drug release agents. Flow behavior index (n) from Power Law equation is 0.173. Biopolymer YU-122 solution was a pseudoplastic non-Newtonian fluid, which indicated that it had one or more side chains. When biopolymer YU-122 was used as a emulsifier, it stabilized the emulsion up to 120 hours, which was much better than xanthan gum. The biopolymer YU-122 could form an excellent but less clear film compared with xanthan and pullulan.

  • PDF

Evaluation of Injection capabilities of a biopolymer-based grout material

  • Lee, Minhyeong;Im, Jooyoung;Chang, Ilhan;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • 제25권1호
    • /
    • pp.31-40
    • /
    • 2021
  • Injection grouting is one of the most common ground improvement practice to increase the strength and reduce the hydraulic conductivity of soils. Owing to the environmental concerns of conventional grout materials, such as cement-based or silicate-based materials, bio-inspired biogeotechnical approaches are considered to be new sustainable and environmentally friendly ground improvement methods. Biopolymers, which are excretory products from living organisms, have been shown to significantly reduce the hydraulic conductivity via pore-clogging and increase the strength of soils. To study the practical application of biopolymers for seepage and ground water control, in this study, we explored the injection capabilities of biopolymer-based grout materials in both linear aperture and particulate media (i.e., sand and glassbeads) considering different injection pressures, biopolymer concentrations, and flow channel geometries. The hydraulic conductivity control of a biopolymer-based grout material was evaluated after injection into sandy soil under confined boundary conditions. The results showed that the performance of xanthan gum injection was mainly affected by the injection pressure and pore geometry (e.g., porosity) inside the soil. Additionally, with an increase in the xanthan gum concentration, the injection efficiency diminished while the hydraulic conductivity reduction efficiency enhanced significantly. The results of this study provide the potential capabilities of injection grouting to be performed with biopolymer-based materials for field application.

Macrophage Stimulating Activity of Exo-Biopolymer from Submerged Culture of Lentinus edodes with Rice Bran

  • Yu, Kwang-Won;Shin, Kwang-Soon;Choi, Yang-Mun;Suh, Hyung-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권4호
    • /
    • pp.658-664
    • /
    • 2004
  • To find a new utilization of rice bran, nine higher fungi were examined for the production of exo-biopolymer with macrophage stimulating activity from rice bran. Among the exo-biopolymers produced from submerged cultures, Lentinus edodes showed the highest activity, followed by Grifola frondosa, Schizophyllum commune, and Coriolus versicolor. L. edodes also had the most potent macrophage stimulating activity in a liquid culture rather than in a solid culture. In order to improve rice bran utilization and the yield of exo-biopolymer with macrophage stimulating activity, the treatment of Rapidase effectively increased the macrophage stimulating activity (about 30% increase), whereas the other enzymes (Econase, Viscozyme, Ultraflo, Celluclast, and Thermylase) treatments did not increase the macrophage stimulating activity. Exo-biopolymer with macrophage stimulating activity from L. edodes contained mainly neutral sugars (58.7%) with considerable amounts of uronic acid (32.2%) and a small amount of proteins (9.1%). Component sugars of exo-biopolymer consisted of mainly arabinose, galactose, glucose, mannose, and xylose (0.95:0.81:0.96:1.00:0.39, respectively). When the exo-biopolymer was treated with $NaIO_4, NaClO_2$, and pronase, the $NaClO_2$ treatment and pronase digestion had little effect, whereas $NaIO_4$ oxidation significantly decreased the macrophage stimulating activity (47.6% reduction at $100\mug/ml$). Therefore, the carbohydrate moiety in exo-biopolymer from L. edodes plays an important role in the expression of the macrophage stimulating activity.