• Title/Summary/Keyword: Neutronic characteristics

Search Result 15, Processing Time 0.021 seconds

Determination of burnup limit for CANDU 6 fuel using Monte-Carlo method

  • Lee, Eun-ki
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.901-910
    • /
    • 2021
  • KHNP recently has obtained the approval for the commercialization of the modified 37-element (or 37 M) fuel bundle and now is loading the 37 M fuel bundles in CANDU-6 reactors in KOREA. One of the main issues for approval was the burnup limit. Due to CANDU design and neutronic characteristics, there was no specific burnup restriction of a fuel bundle. The absence of a burnup limit does not mean that a fuel bundle can stay in the CANDU reactor without a time limit. However, the regulator requested traditional design values as well as the burnup limit reflecting the computer code uncertainty. The method for the PWR burnup limit was not applied to the CANDU fuel bundle. Since there was no approved methodology to build the burnup limit with uncertainties, KHNP introduced a Monte-Carlo method coupled with a 95/95 approach to determine the conservative burnup limit from the viewpoint of the centerline temperature, internal pressure, strain measurement deviation. Moreover, to consider the uncertainties of various computing models, a converted power uncertainty was introduced. This paper presents the methodology and puts forward the limits on burnup, evaluated for each of the existing and modified fuel bundles, in consideration of the pressure tube aging condition.

Neutronics analysis of a 200 kWe space nuclear reactor with an integrated honeycomb core design

  • Chao Chen;Huaping Mei;Meisheng He;Taosheng Li
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4743-4750
    • /
    • 2022
  • Heat pipe cooled nuclear reactor has been a very attractive technical solution to provide the power for deep space applications. In this paper, a 200 kWe space nuclear reactor power design has been proposed based on the combination of an integrated UN ceramic fuel, a heat pipe cooling system and the Stirling power generators. Neutronics and thermal analysis have been performed on the space nuclear reactor. It was found that the entire reactor core has at least 3.9 $ subcritical even under the worst-case submersion accident superimposed a single safety drum failure, and results from fuel temperature coefficient, neutron spectrum and power distribution analysis also showed that this reactor design satisfies the neutronics requirements. Thermal analysis showed that the power in the core can be successfully removed both in normal operation or under one or more heat pipes failure scenarios.

An Evaluation of Nuclear Design Characteristics of Duplex Burnable Absorber Rods (이중구조 가연성 독봉의 핵설계 특성 평가)

  • 이대진;김명현;송근우;정연호
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.71-79
    • /
    • 2002
  • Nuclear design characteristics of duplex burnable poison rod were evaluated based on 24 month cycle fuel for Korean Standard Nuclear Plant. A fuel assembly with duplex burnable poison rod was designed for an equivalent assembly to 16 gadolinia BPs. Duplex BP is composed of inner region of natural U-12wt%Gd$_2$O$_3$ and outer shell of 4.95wt%UO$_2$-2wt%Er$_2$O$_3$. In order to compare this duplex option, assemblies with 140 erbia pins were designed as an alternative option. The variation of k-infinitive, rod worth, pin peaking and MTC were compared. Duplex BP had the better neutronic performance than gadolinia BP in all parameters. However, Duplex BP was worse than erbia BP in the aspect of safety.

  • PDF

EXPERIMENTAL ANALYSES OF SPALLATION NEUTRONS GENERATED BY 100 MEV PROTONS AT THE KYOTO UNIVERSITY CRITICAL ASSEMBLY

  • Pyeon, Cheol Ho;Azuma, Tetsushi;Takemoto, Yuki;Yagi, Takahiro;Misawa, Tsuyoshi
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.81-88
    • /
    • 2013
  • Neutron spectrum analyses of spallation neutrons are conducted in the accelerator-driven system (ADS) facility at the Kyoto University Critical Assembly (KUCA). High-energy protons (100 MeV) obtained from the fixed field alternating gradient accelerator are injected onto a tungsten target, whereby the spallation neutrons are generated. For neutronic characteristics of spallation neutrons, the reaction rates and the continuous energy distribution of spallation neutrons are measured by the foil activation method and by an organic liquid scintillator, respectively. Numerical calculations are executed by MCNPX with JENDL/HE-2007 and ENDF/B-VI libraries to evaluate the reaction rates of activation foils (bismuth and indium) set at the target and the continuous energy distribution of spallation neutrons set in front of the target. For the reaction rates by the foil activation method, the C/E values between the experiments and the calculations are found around a relative difference of 10%, except for some reactions. For continuous energy distribution by the organic liquid scintillator, the spallation neutrons are observed up to 45 MeV. From these results, the neutron spectrum information on the spallation neutrons generated at the target are attained successfully in injecting 100 MeV protons onto the tungsten target.

Neutronic design and evaluation of the solid microencapsulated fuel in LWR

  • Deng, Qianliang;Li, Songyang;Wang, Dingqu;Liu, Zhihong;Xie, Fei;Zhao, Jing;Liang, Jingang;Jiang, Yueyuan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3095-3105
    • /
    • 2022
  • Solid Microencapsulated Fuel (SMF) is a type of solid fuel rod design that disperses TRISO coated fuel particles directly into a kind of matrix. SMF is expected to provide improved performance because of the elimination of cladding tube and associated failure mechanisms. This study focused on the neutronics and some of the fuel cycle characteristics of SMF by using OpenMC. Two kinds of SMFs have been designed and evaluated - fuel particles dispersed into a silicon carbide matrix and fuel particles dispersed into a zirconium matrix. A 7×7 fuel assembly with increased rod diameter transformed from the standard NHR200-II 9×9 array was also introduced to increase the heavy metal inventory. A preliminary study of two kinds of burnable poisons (Erbia & Gadolinia) in two forms (BISO and QUADRISO particles) was also included. This study found that SMF requires about 12% enriched UN TRISO particles to match the cycle length of standard fuel when loaded in NHR200-II, which is about 7% for SMF with increased rod diameter. Feedback coefficients are less negative through the life of SMF than the reference. And it is estimated that the average center temperature of fuel kernel at fuel rod centerline is about 60 K below that of reference in this paper.