• Title/Summary/Keyword: Neutron-scattering technique

Search Result 16, Processing Time 0.017 seconds

Elemental Analysis by Neutron Induced Nuclear Reaction - Prompt Gamma Neutron Activation Analysis for Chemical Measurement - (중성자 핵반응을 이용한 원소 검출기술 - 즉발감마선 중성자 방사화분석법을 이용한 검출기술 -)

  • Song, Byung Chul;Park, Yong Joon;Jee, Kwang Yong
    • Analytical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.1041-1051
    • /
    • 2003
  • Neutron induced prompt gamma activation analysis (PGAA) offers a nondestructive, sensitive and relatively rapid method for the determination of trace and major elements and is proven to be convenient for online analysis of minerals, metals, coal, cement, petrochemical, coating, paper as well as many other materials and products. The technique has found many uses in medicine, industry, research, security and the detection of contraband items. This report reviews the present status and future trends of the PGAA techniques. Requirements for the system are neutron source, high resolution HPGe detectors with a high-voltage power supply, an amplifier, analog-to-digital converter, and a multichannel analyzer for the detection and measurement of prompt ${\gamma}$-ray emit form the neutron capture elements. Introducing a ${\gamma}$-${\gamma}$ coincidence system also improves the quality of the ${\gamma}$-ray spectrum by suppressing the background created from the Compton scattering of high energy prompt ${\gamma}$-rays. A PGAA system using a $^{252}Cf$ neutron source is currently under construction for the on-line measurement of several elements in aqueous samples at KAERI. The system can be applied for the detection of chemical weapons and explosives as well as various narcotics.

Comparison of Light Output from NE213 for Electrons and Protons

  • Shin, Hyun-Kook;Koh, Byung-Joon
    • Nuclear Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.111-117
    • /
    • 1979
  • The light output of the NE213 liquid scintillator to electrons and protons was measured by coincidence spectrometer which employs the time of flight technique. The proton energies (3.2Mev, 4Mev, 5Mev, 6Mev) represent the kinetic energies of recoil protons from elastic scattering of a polyenergetic neutron source Am-Be (about 2-9 Mev) at angle of 45$^{\circ}$ and 60$^{\circ}$. The response of the NE213 liquid scintillator to protons was varied nonolinearly as the energy increased. while the response to electrons was varied linearly. The light intensity produced by electrons was relatively larger than that of protons in the rate of about three times when the same energy was introduced. The results of the light output to protons were similar to those of Batchelor et al.

  • PDF

Enhancement of nuclear radiation shielding and mechanical properties of YBiBO3 glasses using La2O3

  • Issa, Shams A.M.;Ali, Atif Mossad;Tekin, H.O.;Saddeek, Y.B.;Al-Hajry, Ali;Algarni, Hamed;Susoy, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1297-1303
    • /
    • 2020
  • In this study, nuclear radiation shielding and rigidity parameters of Y (0.1-x)B0.6Bi1.8O3La2x glassy system were investigated in order to determine it's suitability for use as nuclear radiation shielding materials. Therefore, a group of bismuth borate glass samples with La2O3 additive were synthesized using the technique of melt quenching. According to the results, the increase of the La2O3 additive increases the density of the glass samples and the mass attenuation coefficient (μm) values, whereas the half-value layer (HVL) and mean free path (MFP) values decrease. The effective atomic number (Zeff) is also enhanced with an increment of both mass removal cross section for neutron (ΣR) and absorption neutron scattering cross section (σabs). In addition to the other parameters, rigidity parameter values were theoretically examined. The increase of La2O3 causes some other important magnitudes to increase. These are the average crosslink density, the number of bonds per unit volume, as well as the stretching force constant values of these glass samples. These results are in concordance with the increase of elastic moduli in terms of the Makishima-Mackenzie model. This model showed an increase in the rigidity of the glass samples as a function of La2O3.

Borehole Elemental Concentration Logs: Theory, Current Trends and Next Level (암석구성성분검층: 원리, 연구동향 및 향후 과제)

  • Shin, Jehyun;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.149-159
    • /
    • 2019
  • Borehole elemental concentration logging, measuring neutron-induced gamma rays by inelastic scattering and neutron capture interactions between neutron and formation, delivers concentrations of the most common elements found in the minerals and fluids of subsurface formation. X-ray diffraction and X-ray fluorescence analysis from core samples are traditionally used to understand formation composition and mineralogy, but it represents only part of formations. Additionally, it is difficult to obtain elemental analysis over the whole intervals because of poor core recovery zones such as fractures or sand layers mainly responsible for groundwater flow. The development of borehole technique for in situ elemental analysis plays a key role in assessing subsurface environment. Although this technology has advanced consistently starting from conventional and unconventional resources evaluation, it has been considered as exclusive techniques of some major service company. As regards domestic research and development, it has still remained an unexplored field because of some barriers such as the deficiency of detailed information on tools and calibration facility for chemistry and mineralogy database. This article reviews the basic theory of spectroscopy measurements, system configuration, calibration facility, and current status. In addition, this article introduces the domestic researches and self-development status on borehole elemental concentration tools.

Finite Difference Model of Unsaturated Soil Water Flow Using Chebyshev Polynomials of Soil Hydraulic Functions and Chromatographic Displacement of Rainfall (Chebyshev 다항식에 의한 토양수분특성 및 불포화 수리전도도 추정과 부분 치환 원리에 의한 강우 분포를 이용한 토양수분 불포화 이동 유한차분 수리모형)

  • Ro, Hee-Myong;Yoo, Sun-Ho;Han, Kyung-Hwa;Lee, Seung-Heon;Lee, Goon-Taek;Yun, Seok-In;Noh, Young-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.4
    • /
    • pp.181-192
    • /
    • 2003
  • We developed a mathematical simulation model to portray the vertical distribution of soil water from the measured weather data and the known soil hydraulic properties, and then compared simulation results with the periodically measured soil water profiles obtained on Jungdong sandy loam to verify the model, In this model, we solved potential-based Richards' equation by the implicit finite difference method superimposed on the predictor-corrector scheme. We presumed that: soil hydraulic properties are homogeneous; soil water flows isothermally; hysteresis is not considered; no vapor flows; no heat transfers into the soil profiles; and water added to soil surface is distributed along the soil profile following partial displacement principle. The input data were broadly classified into two groups: (1) daily weather data such as rainfall, maximum and minimum air temperatures, relative humidity and solar radiation and (2) soil hydraulic data to approximate unsaturated hydraulic conductivity and water retention. Each hydraulic polynomial function approximated using the Chebyshev polynomial and least square difference technique in tandem showed a fairly good fit of the given set of data. Vertical distribution of soil water as approximations to the Richards' equation subject to changing surface and phreatic boundaries was solved numerically during 53 days with a comparatively large time increment, and this pattern agreed well with field neutron scattering data, except for the surface 0.1 m slab.

Diffusion synthetic acceleration with the fine mesh rebalance of the subcell balance method with tetrahedral meshes for SN transport calculations

  • Muhammad, Habib;Hong, Ser Gi
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.485-498
    • /
    • 2020
  • A diffusion synthetic acceleration (DSA) technique for the SN transport equation discretized with the linear discontinuous expansion method with subcell balance (LDEM-SCB) on unstructured tetrahedral meshes is presented. The LDEM-SCB scheme solves the transport equation with the discrete ordinates method by using the subcell balances and linear discontinuous expansion of the flux. Discretized DSA equations are derived by consistently discretizing the continuous diffusion equation with the LDEM-SCB method, however, the discretized diffusion equations are not fully consistent with the discretized transport equations. In addition, a fine mesh rebalance (FMR) method is devised to accelerate the discretized diffusion equation coupled with the preconditioned conjugate gradient (CG) method. The DSA method is applied to various test problems to show its effectiveness in speeding up the iterative convergence of the transport equation. The results show that the DSA method gives small spectral radii for the tetrahedral meshes having various minimum aspect ratios even in highly scattering dominant mediums for the homogeneous test problems. The numerical tests for the homogeneous and heterogeneous problems show that DSA with FMR (with preconditioned CG) gives significantly higher speedups and robustness than the one with the Gauss-Seidel-like iteration.