• Title/Summary/Keyword: Neutron therapy

Search Result 86, Processing Time 0.026 seconds

A Study on the Neutron in Radiation Treatment System and Related Facility (방사선치료 장치 및 관련시설에서의 산란 중성자에 관한 연구)

  • Kim Dae-Sup;Kim Jeong-Man;Lee Hee-Seok;Lim Ra-Seung;Kim You-Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.17 no.2
    • /
    • pp.141-145
    • /
    • 2005
  • Purpose : It is known that the neutron is generally generated from the photon, its energy is larger than 10 MV. The neutron is leaked in the container inspection system installed at the customs though its energy is below 9 MV. It is needed that the spacial effect of the neutrons released from radiation treatment machine, linac, installed in the medical canter. Materials and Methods : The medical linear accelerator(Clinac 1800, varian, USA) was used in the experiment. Measuring neutron was used bubble detector(Bubble detector, BDPND type, BTI, Canada) which was created bubble by neutron. The bubble detector is located on the medical linear accelerator outskirt in three different distance, 30, 50, 120 cm and upper, lower four point from the iso-center. In addition, for effect on protect material we have measured eight points which are 50 cm distance from iso-center. The SAD(source-axis-distance), distance from photon source to iso-center, is adjusted to 100 cm and the field size is adjusted to $15{\times}15cm^2$. Irradiate 20 MU and calculate the dose rate in mrem/MU by measuring the number of bubble. Results : The neutron is more detected at 5 position in 30, 50 cm, 7 position in 120 cm and with wedge, and 2 position without mount. Conclusion : Though detection position is laid in the same distance in neutron measurement, the different value is shown in measuring results. Also, neutron dose is affected by the additional structure, the different value is obtained in each measurement positions. So, it is needed to measure and evaluate the neutron dose in the whole space considering the effect of the distance, angular distribution and additional structure.

  • PDF

A Study on the Genetic Risk and Carcinogenesis Probability of Prostate Cancer Patients Due to Photoneutron Generation (광중성자 발생으로 인한 전립샘암 환자의 유전적 위험과 발암의 확률에 관한 연구)

  • Joo-Ah Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.473-479
    • /
    • 2023
  • In this study, the dose of photoneutrons generated during radiotherapy of prostate cancer using high energy was measured using a photo-stimulated luminescence dosimeter. In addition, this study was intended to study the probability of side effects occurring in the abdomen. A medical linear accelerator capable of generating 15 MV energy, True Beam STx (Varian Medical Systems, USA) and a radiation treatment planning system (Eclipse, Varian Medical Systems, USA) were used. A human body phantom was installed on the couch of the linear accelerator, and an Albedo Neutron Optical Stimulation Luminescence Neutron Detector (Landauer Inc., IL, USA) was used to measure the photoneutron dose. The photoneutron dose value in the abdomen of VMAT and 3C-CRT was 52.8 mSv, more than twice as high as VMAT compared to 3D-CRT. During radiotherapy of prostate cancer, the probability of causing side effects in the abdomen due to light neutron dose was calculated to be 3.2 per 1,000 for VMAT and 1.4 for 3D-CRT. By studying the abdomen, which has a major side effect that can occur during radiotherapy of prostate cancer, it is expected that it will be used as a meaningful study to study the quality of life and stochastic effect of prostate cancer patients

Measurement of Growth Delay and the Oxygen Enhancement Ratio of Fast Neutron Beam Using Mouse Model System (마우스모델을 이용한 고속중성자선의 성장지연 및 산소증강비의 측정)

  • Eom, Keun-Yong;Park, Hye-Jin;Kwon, Eun-Kyung;Ye, Sung-Joon;Lee, Dong-Han;Wu, Hong-Gyun
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.4
    • /
    • pp.178-183
    • /
    • 2007
  • Neutrons are high LET (linear energy transfer) radiation and cause more damage to the target cells than x-rays or gamma rays. The damage from neutrons is generally considered fatal to a cell and neutrons have a greater tendency to cause cell death through direct interaction on DNA. We performed experiments to measure growth delay ratio and oxygen enhancement ratio (OER) in mouse model system. We inoculated EMT-6 cells to the right hind leg of BALB-c mouse and X-rays and neutron beams were given when the average volume of tumors reached $200-300mm^3$. We irradiated 0, 11, 15.4 Gy of X-ray and 0, 5, 7 Gy of fast neutron beam at normoxic and hypoxic condition. The volume of tumors was measured 3 times per week. In x-ray experiment, growth delay ratio was 1.34 with 11 Gy and 1.33 with 15.4 Gy in normoxic condition compared to in hypoxic condition, respectively. In neutron experiment, growth delay ratio was 0.94 with 5 Gy and 0.98 with 7 Gy, respectively. The OER of neutron beam was 0.97. The neutron beam was more effective than X-ray in the control of hypoxic tumors.

MC-50 의학용 싸이클로트론의 특성조사

  • Park, Ju-Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.2 no.1
    • /
    • pp.23-29
    • /
    • 1987
  • The general features and measured results of the 143cm, variable-energy, three sector-focused MC-50 cyclotron installed at Korea Cancer Center Hospital are described. The MC-50 cyclotron is designed to produce beams of protons, deuterons, He-3 and alpha particles of maximum energies 50MeV, 25MeV, 66MeV and 50MeV respectively to be used for neutron therapy and radioisotope production. The azimuthal field variation is produced by three sets of spiral ridges having a maximum spiral angle of $55^{\circ}$. The RF system, a two-dee quarter-wave system is designed to provide a continuously variable frequency from 15.5 to 26.8 MHz. The first external beam was obtained in January 1986. Subsequent internal ana external beam studies with protons and alphas show a well-behaved beam through the whole beam transport system.

  • PDF

Boronated Porphyrins and Chlorins as Potential Anticancer Drugs

  • Ol'shevskaya, Valentina A.;Zaytsev, Andrey V.;Savchenko, Arina N.;Shtil, Alexander A.;Cheong, Chan-Seong;Kalinin, Valery N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1910-1916
    • /
    • 2007
  • Analyzed are recent advances in design of novel boronared conjugates of synthetic and natural porphyrins and chlorins. These compounds showed high efficacy as cytotoxic agents for tumor cells in culture and as phototoxins in photodynamic therapy of tumor xenografts. Thus, boronated porphyrins and chlorins emerge as promising class of anticancer agents with potentially multiple advantages: the chemotherapeutic drugs alone and photo- and radiosensitizers in binary treatments.

Neutron dosimetry depending on the number of portals for prostate cancer IMRT(Intensity-Modulated Radiation Therapy) (전립선암의 세기조절 방사선치료 시 조사문수별 중성자선량 평가)

  • Lee, Joo-Ah;Son, Soon-Yong;Min, Jung-Whan;Choi, Kwan-Woo;Na, Sa-Ra;Jeong, Hoi-Woun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3734-3740
    • /
    • 2014
  • The aim of this study was provide basic information and establish the criteria in radiation therapy planning by measuring the absorbed neutron dose of normal tissues and lesions according to the number of portals. From September 2013 to January 2014, 20 patients who were diagnosed with prostate cancer and were previously treated with radiation therapy were replanned retrospectively to measure the absorbed neutron dose distribution according to the number of portals. The absorbed neutron dose was measured in each of the 5, 7 and 9 portals using a 15 MV energy, which meant a therapeutic dose of 220 cGy. The optical stimulation luminescence dosimeter was separated by 20cm and 60cm away from the center of the field of view. As a result, the average radiation dose in the abdomen appeared to have a positive relationship with the number of portals, which was statistically significant (p<.05). The average radiation dose was $4.34{\pm}1.08$. The average radiation dose in the thyroid was $2.71{\pm}.37$. Although it showed a positive relationship with the number of portals, it did not have statistical significance. The number of portals and the neutron dose depending on the position showed a significant positive relationship, particularly in the abdomen. As a result of linear regression analysis, as the number of the portal increased in steps, the average volume of the neutrons increased significantly (0.416 times). In conclusion, efficient selection of the number of portals is needed considering the difference in the absorbed neutron dose in the normal tissues depending on the number of the portals.

New Boron Compound, Silicon Boride Ceramics for Capturing Thermal Neutrons (Possibility of the material application for nuclear power generation)

  • Matsushita, Jun-ichi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.15-15
    • /
    • 2011
  • As you know, boron compounds, borax ($Na_2B_4O_5(OH)_4{\cdot}8H_2O$) etc. were known thousands of years ago. As for natural boron, it has two naturally occurring and stable isotopes, boron 11 ($^{11}B$) and boron 10 ($^{10}B$). The neutron absorption $^{10}B$ is included about 19~20% with 80~81% $^{11}B$. Boron is similar to carbon in its capability to form stable covalently bonded molecular networks. The mass difference results in a wide range of ${\beta}$ values between the $^{11}B$ and $^{10}B$. The $^{10}B$ isotope, stable with 5 neutrons is excellent at capturing thermal neutrons. For example, it is possible to decrease a thermal neutron required for the nuclear reaction of uranium 235 ($^{235}U$). If $^{10}B$ absorbs a neutron ($^1n$), it will change to $^7Li+^1{\alpha}$ (${\alpha}$ ray, like $^4He$) with prompt ${\gamma}$ ray from $^{11}B$ $^{11}B$ (equation 1). $$^{10}B+^1n\;{\rightarrow}\;^{11}B\;{\rightarrow}\; prompt \;{\gamma}\;ray (478 keV), \;^7Li+4{\alpha}\;(4He)\;\;\;\;{\cdots}\; (1)$$ If about 1% boron is added to stainless steel, it is known that a neutron shielding effect will be 3 times the boron free steel. Enriched boron or $^{10}B$ is used in both radiation shielding and in boron neutron capture therapy. Then, $^{10}B$ is used for reactivity control and in emergency shutdown systems in nuclear reactors. Furthermore, boron carbide, $B_4C$, is used as the charge of a nuclear fission reaction control rod material and neutron cover material for nuclear reactors. The $B_4C$ powder of natural B composition is used as a charge of a control material of a boiling water reactor (BWR) which occupies commercial power reactors in nuclear power generation. The $B_4C$ sintered body which adjusted $^{10}B$ concentration is used as a charge of a control material of the fast breeder reactor (FBR) currently developed aiming at establishment of a nuclear fuel cycle. In this study for new boron compound, silicon boride ceramics for capturing thermal neutrons, preparation and characterization of both silicon tetraboride ($SiB_4$) and silicon hexaboride ($SiB_6$) and ceramics produced by sintering were investigated in order to determine the suitability of this material for nuclear power generation. The relative density increased with increasing sintering temperature. With a sintering temperature of 1,923 K, a sintered body having a relative density of more than 99% was obtained. The Vickers hardness increased with increasing sintering temperature. The best result was a Vickers hardness of 28 GPa for the $SiB_6$ sintered at 1,923K for 1 h. The high temperature Vickers hardness of the $SiB_6$ sintered body changed from 28 to 12 GPa in the temperature range of room temperature to 1,273 K. The thermal conductivity of the SiB6 sintered body changed from 9.1 to 2.4 W/mK in the range of room temperature to 1,273 K.

  • PDF

Evaluation of Biological Characteristics of Neutron Beam Generated from MC50 Cyclotron (MC50 싸이클로트론에서 생성되는 중성자선의 생물학적 특성의 평가)

  • Eom, Keun-Yong;Park, Hye-Jin;Huh, Soon-Nyung;Ye, Sung-Joon;Lee, Dong-Han;Park, Suk-Won;Wu, Hong-Gyun
    • Radiation Oncology Journal
    • /
    • v.24 no.4
    • /
    • pp.280-284
    • /
    • 2006
  • $\underline{Purpose}$: To evaluate biological characteristics of neutron beam generated by MC50 cyclotron located in the Korea Institute of Radiological and Medical Sciences (KIRAMS). $\underline{Materials\;and\;Methods}$: The neutron beams generated with 15 mm Beryllium target hit by 35 MeV proton beam was used and dosimetry data was measured before in-vitro study. We irradiated 0, 1, 2, 3, 4 and 5 Gy of neutron beam to EMT-6 cell line and surviving fraction (SF) was measured. The SF curve was also examined at the same dose when applying lead shielding to avoid gamma ray component. In the X-ray experiment, SF curve was obtained after irradiation of 0, 2, 5, 10, and 15 Gy. $\underline{Results}$: The neutron beams have 84% of neutron and 16% of gamma component at the depth of 2 cm with the field size of $26{\times}26\;cm^2$, beam current $20\;{\mu}A$, and dose rate of 9.25 cGy/min. The SF curve from X-ray, when fitted to linear-quadratic (LQ) model, had 0.611 as ${\alpha}/{\beta}$ ratio (${\alpha}=0.0204,\;{\beta}=0.0334,\;R^2=0.999$, respectively). The SF curve from neutron beam had shoulders at low dose area and fitted well to LQ model with the value of $R^2$ exceeding 0.99 in all experiments. The mean value of alpha and beta were -0.315 (range, $-0.254{\sim}-0.360$) and 0.247 ($0.220{\sim}0.262$), respectively. The addition of lead shielding resulted in no straightening of SF curve and shoulders in low dose area still existed. The RBE of neutron beam was in range of $2.07{\sim}2.19$ with SF=0.1 and $2.21{\sim}2.35$ with SF=0.01, respectively. $\underline{Conclusion}$: The neutron beam from MC50 cyclotron has significant amount of gamma component and this may have contributed to form the shoulder of survival curve. The RBE of neutron beam generated by MC50 was about 2.2.

Radioiodination strategies for carborane compounds

  • Rajkumar Subramani;Abhinav Bhise;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.1
    • /
    • pp.39-44
    • /
    • 2022
  • The development of methods for the inert and stable radiohalogenation of targeted radiopharmaceuticals is a prerequisite for real-time diagnosis and therapy using radiohalogenated radiopharmaceuticals. Radiohalogenated carboranes demonstrate superior stability in vivo and versatile applications compared with directly labeled tyrosine analogues or synthetically modified organic compounds. Herein, we focus on the most common approaches for the radioiodination (123l, 124l, 125l, and 131l) of carborane derivatives.