A feasibility study was performed to design an epithermal neutron beam for BNCT using the neutron of 2.45 MeV on the average produced from $^2H(d,n)^3$He reaction induced by plasma focus in the z-pinch instead of the conventional accelerator-based $^3H(d, n)^4$He neutron generator. Flux and spectrum were analyzed to use these neutrons as the neutron source for BNCT. Neutronic characteristics of several candidate materials in this neutron source were investigated Using MCNP Code, and $^7LiF$ ; 40%Al + 60%$AIF_3$, and Pb Were determined as moderator, filter, and reflector in an epithermal neutron beam design for BNCT, respectively. The skin-skull-brain ellipsoidal phantom, which consists of homogeneous regions of skin-, bone-, or brain-equivalent material, was used in order to assess the dosimetric effect in brain. An epithermal neutron beam design for BNCT was proposed by the repeated work with MCNP runs, and the dosimetric properties (AD, AR, ADDR, and Dose Components) calculated within the phantom showed that the neutron beam designed in this work is effective in tumor therapy. If the neutron source flux is high enough using the z-pinch plasma, BNCT using the neutron source produced from $^2H(d,n)^3$He reaction will be very feasible.
Kim, Byung-Mun;Kim, Young-Sear;Bak, Joo-Shik;Lee, Jong-Du;Yoo, Seong-Yul;Koh, Kyung-Hwan
Journal of Radiation Protection and Research
/
v.15
no.2
/
pp.113-122
/
1990
After four years of planning, equipment acquisition, facility construction and beam testing, the KCCH cyclotron facility was put into operation in November1986. Now the KCCH cyclotron(MC-50) has been used for four years in neutron therapy and radioisotope production. Up to December 1989, 179(1852 sessions) patient have undergone neutron therapy. Radioisotope production for nuclear medicine use was started from March 1989 after extensive work to overcome target transport, target melting, beam diagnostic and chemical processing problems. This status report introduces the cyclotron facility, and the experiences of neutron therapy and isotope production with the MC-50 cyclotron. Besides, the operation results and the general troubles of the MC-50 during 1989 are summarized. Total operation time was 1252.5 hours. Four hundred hours were used for neutron therapy of 599 treatment sessions and 832.5 hours for radioisotope production. Total amount of produced raioisotope was 1695 mCi(Ga-67 : 1478mCi, Tl-201 : 107 mCi, I-123 : 25mCi, In-111 : 85mCi). Twenty hours were used for scheduled beam testing. In 1989, 882% of the planned operation were performed on schedule and this rats is improved remarkably compared to 71.0% in 1988.
The purpose of this study was to evaluate the cancer incidence rate and provide basic data by measuring the photoneutron dose generated during intensity-modulated radiation therapy and volumetric modulated arc therapy used in radiation therapy for prostate cancer. The optically stimulated luminescence albedo neutron dosimeter for neutron measurement was placed on the Rando phantom in the abdomen and thyroid and photoneutron dose generated was measured. As a result of the study, intensity-modulated radiation therapy (7 portal) was measured to be higher than volumetric rotational radiation therapy in both abdominal and thyroid locations. When the cancer incidence rate was evaluated using the nominal risk coefficient of ICRP 103, the cancer incidence rate due to exposure to the colon and thyroid during intensity-modulated radiation therapy was 9.9 per 1,000 people, and volumetric rotational radiation therapy for 1,000 people. It was 3.5 per person. Based on the principle of ALARA (As low as reasonably archievable), it is considered to be a guideline for minimizing the exposure dose to normal organs in the establishment of a radiation treatment plan.
Yinan Zhu;Zuokang Lin;Haiyan Yu;Xiaohan Yu;Zhimin Dai
Nuclear Engineering and Technology
/
v.56
no.5
/
pp.1813-1821
/
2024
Beam shaping assembly (BSA) is a vital component in Boron Neutron Capture Therapy (BNCT) for obtaining epithermal neutron beams. Several feasible designs of BSA for accelerator-based BNCT (AB-BNCT) neutron source are carried out based on neutrons by bombarding a natural lithium target with 10 mA, 2.8 MeV proton beams. The calculation results demonstrate that a thickness of 45 cm is appropriate for general moderators referring to the therapeutic parameter of Advanced Depth (AD). A series of optimizations are performed and two results are confirmed: One is that employing the configuration of MgF2 and FLUENTAL combined by 1:1 could improve the therapeutic rate (TR) of tumors at a depth of middle region, and the other one is that the TR of superficial tumors can be increased by adding a 5 cm thick boron-11 secondary moderator at the end of general moderators. As a result, an innovative conception of an adjustable moderator is recommended to BNCT. Compared to the MgF2 moderator with a fixed thickness of 45 cm, the TR value can be improved by a maximum of 47.7 % by using the adjustable moderator. Furthermore, the configuration of adjustable moderator has been designed with regulation method for treating tumors of different depths.
Experiments related to Boron Neutron Capture Therapy (BNCT) accomplished at the Institute of Nuclear Techniques (INT), Budapest University of Technology and Economics (TUB) are presented. Relevant investigations are required before designing BNCT for vivo applications. Samples of relevant boron compounds (H3BO3, BDTPA) usually employed in BNCT were investigated with neutron beam. Channel #5 in the research reactor (100 kW) of INT-TUB provides the neutron beam. Boron samples are mounted on a carrier for neutron irradiation. The particle attenuation of several carrier materials was investigated, and the one with the lowest attenuation was selected. The effects of boron compound type, mass, and compound phase state were also investigated. To detect the emitted charged particles, a traditional ZnS(Ag) detector was employed. The neutron beam's interaction with the detector-detecting layer is investigated. Graphite (as a moderator) was employed to change the neutron beam's characteristics. The fast neutron beam was also thermalized by placing a portable fast neutron source in a paraffin container and irradiating the H3BO3. The obtained results suggest that the direct measurement approach appears to be insufficiently sensitive for determining the radiation dose committed by the Alpha particles from the 10B (n,α) reaction. As a result, a new approach must be used.
The aim of this study was to optimize the target, moderator, and collimator (TMC) in a neutron beam generator for the accelerator-based BNCT (A-BNCT) system. The optimization employed the Monte Carlo Neutron and Photon (MCNP) simulation. The optimal geometry for the target was decided as the one with the highest neutron flux among nominates, which were called as angled, rib, and tube in this study. The moderator was optimized in terms of consisting material to produce appropriate neutron energy distribution for the treatment. The optimization of the collimator, which wrapped around the target, was carried out by deciding the material to effectively prevent the leakage radiations. As results, characteristic of the neutron beam from the optimized TMC was compared to the recommendation by the International Atomic Energy Agent (IAEA). The tube type target showed the highest neutron flux among nominates. The optimal material for the moderator and collimator were combination of Fluental (Al203+AlF3) with 60Ni filter and lead, respectively. The optimized TMC satisfied the IAEA recommendations such as the minimum production rate of epithermal neutrons from thermal neutrons: that was 2.5 times higher. The results can be used as source terms for shielding designs of treatment rooms.
This paper is intended to provide key issues and current research outcomes on accelerator-based Boron Neutron Capture Therapy (BNCT). Accelerator-based neutron sources are efficient to provide epithermal neutron beams for BNCT; hence, much research, worldwide, has focused on the development of components crucial for its realization: neutron-producing targets and cooling equipment, beam-shaping assemblies, and treatment planning systems. Proton beams of 2.5 MeV incident on lithium target results in high yield of neutrons at relatively low energies. Cooling equipment based on submerged jet impingement and micro-channels provide for viable heat removal options. Insofar as beam-shaping assemblies are concerned, moderators containing fluorine or magnesium have the best performance in terms of neutron accumulation in the epithermal energy range during the slowing-down from the high energies. NCT_Plan and SERA systems, which are popular dose distribution analysis tools for BNCT, contain all the required features (i.e., image reconstruction, dose calculations, etc.). However, detailed studies of these systems remain to be done for accurate dose evaluation. Advanced research centered on accelerator-based BNCT is active in Korea as evidenced by the latest research at Hanyang University. There, a new target system and a beam-shaping assembly have been constructed. The performance of these components has been evaluated through comparisons of experimental measurements with simulations. In addition, a new patient-specific treatment planning system, BTPS, has been developed to calculate the deposited dose and radiation flux in human tissue. It is based on MCNPX, and it facilitates BNCT efficient planning based via a user-friendly Graphical User Interface (GUI).
A thermal neutron beam facility utilizing a typical tangential beam port for Neutron Capture Therapy was installed at the HANARO, 30 MW multi-purpose research reactor. Mixed beams with different physical characteristics and relative biological effectiveness would be emitted from the BNCT irradiation facility, so a quantitative analysis of each component of the mixed beams should be performed to determine the accurate delivered dose. Thus, various techniques were applied including the use of activation foils, TLDs and ionization chambers. All the dose measurements were perform ed with the water phantom filled with distilled water. The results of the measurement were compared with MCNP4B calculation. The thermal neutron fluxes were $1.02E9n/cm^2{\cdot}s\;and\;6.07E8n/cm^2{\cdot}s$ at 10 and 20 mm depth respectively, and the fast neutron dose rate was insignificant as 0.11 Gy/hr at 10 mm depth in water The gamma-ray dose rate was 5.10 Gy/hr at 20 mm depth in water Good agreement within 5%, has been obtained between the measured dose and the calculated dose using MCNP for neutron and gamma component and discrepancy with 14% for fast neutron flux Considering the difficulty of neutron detection, the current study support the reliability of these results and confirmed the suitability of the thermal neutron beam as a dosimetric data for BNCT clinical trials.
The passive scattering system nozzle of the proton therapy accelerator was simulated to evaluate the neutrons generated by each component in each nozzle by energy. The Monte Carlo N-Particle code was used to implement spread out Bragg peak with proton energy 220 MeV, reach 20 cm, and 6 cm length used in the treatment environment. Among the proton accelerator components, neutrons were the highest in scatterers, and the neutron flux decreased as it moved away from the central flux of the proton. This study can be used as a basic data for the evaluation of the radiation necessary for the maintenance and dismantling of proton accelerators.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.