• 제목/요약/키워드: Neutron production rate

검색결과 18건 처리시간 0.031초

SCBF 장치에서 중성자 생성률 증대를 위한 수치해석 (Numerical simulation for increment of neutron production rate in SCBF device)

  • 주흥진;박정호;고광철
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 C
    • /
    • pp.2184-2186
    • /
    • 2005
  • Neutron production is very important to apply fusion energy through SCBF(Spherically Convergent Beam Fusion) device and its rate is Proportional to the square of the ion current$({\propto}I^2)$. Also the ion current has a close relation with the potential well structure in grid cathode. In this paper, the ion current is calculated for the increasement of neutron production rate in a variety of grid cathode geometry. The atomic and molecular collision are taken into account by Monte Carlo Method and Potential is calculated by Finite Element Method. Main processes of the discharge is the ionization of $D_2$ by fast $D_2^+$ ion. As the number of a cathode ring is small and gap distance decreases, the ion current increases and neutron production rate will increase.

  • PDF

SCBF 장치에서 그리드 음극 구조의 영향에 대한 입자 시뮬레이션 (Particle Simulation on the Effect of Grid Cathode Geometry in SCBF Device)

  • 주흥진;박정호;고광철
    • 한국전기전자재료학회논문지
    • /
    • 제20권8호
    • /
    • pp.742-747
    • /
    • 2007
  • In 2-dimensional SCBF (Spherically Convergent Beam Fusion) device, the effect on neutron production rate of the grid cathode geometry was simulated. The motion of Particles was tracked using Monte Carlo Method including the atomic and molecular collision processes and potential distribution was calculated by Finite Element Method, Main processes of the discharge were the ionization of $D_2$ by fast $D_2^+\;ion$. As the number of cathode rings was small and the size of grid cathode decreased, the ion current increased and neutron production rate will also increase. The star mode discharge which is a very important characteristic in SCBF device, was confirmed by the ionization position.

SCBF 장치에서 이온전류에 대한 포텐셜 우물 구조의 영향 (Effect of Potential Well Structure on Ion Current in SCBF Device)

  • 주흥진;박정호;고광철
    • 한국전기전자재료학회논문지
    • /
    • 제20권5호
    • /
    • pp.471-477
    • /
    • 2007
  • SCBF(Spherically Convergent Beam Fusion) device has been studied as a neutron source. Neutron production rate is a most important factor for the application of SCBF device and is proportional to the square of the ion current[1]. It is regarded generally that some correlations between the potential well structure and the ion current exist. In this paper, the ion current and potential distribution were calculated in a variety of grid cathode geometries using FEM-FCT method. Single potential well structure was certified inside the grid cathode. The deeper the potential well became, the higher the ion current due to the high electric field near the grid cathode became.

구형 집속 빔 핵융합 장치에서 그리드 음극 구조의 최적 설계 (Optimal Design of Grid Cathode Structure in Spherically Convergent Beam Fusion Device)

  • 주흥진;박정호;황휘동;최승길;고광철
    • 한국전기전자재료학회논문지
    • /
    • 제21권4호
    • /
    • pp.381-387
    • /
    • 2008
  • Neutron production rate in spherically convergent beam fusion(SCBF) device as a portable neutron source strongly depends on the ion current and the grid cathode structure. In this paper, as the process of design and analysis, Design of Experiment(DOE) based on the results by Finite Element Method-Flux Corrected Transport(FEM-FCT) method is employed to calculate the ion current. This method is very useful to find optimal design conditions in a short time. Number of rings, radius of rings, and distance between the grid cathode and center are selected as control factors. From the results in the optimized model, the higher ion current is calculated and deeper potential well is also observed.

Design of proton-beam degrader for high-purity 89Zr production

  • Hyunjin Lee;Sangbong Lee;Daeseong Choi;Gyoseong Jeong;Hee Seo
    • Nuclear Engineering and Technology
    • /
    • 제56권7호
    • /
    • pp.2683-2689
    • /
    • 2024
  • This work investigated the most suitable type of degrader (Cu, Al or Nb) and its thickness, taking into consideration the salient aspects of concrete activation for high-purity 89Zr production by 89Y(p,n)89Zr nuclear reaction. The MCNP and FISPACT codes were used to determine the optimal degrader thickness and the radioactivity of shielding concrete by neutron activation, respectively. The results showed that the optimal thickness of the beam degraders was 1.16, 3.19, and 1.33 mm for Cu, Al, and Nb, respectively. The neutron production rate per proton and the energy and angular distributions of neutrons varied depending on the type of degrader. Considering the radioactivity of the target-room concrete and the amount of radioactive waste expected to be generated, the use of a 1.33-mm-thick Nb degrader for 89Zr production was determined to be the best choice.

State-of-the-art progress of gaseous radiochemical method for detecting of ionizing radiation

  • Lebedev, S.G.;Yants, V.E.
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2075-2083
    • /
    • 2021
  • The article provides a review of the research results obtained during of more than 20 years concerning using the gaseous radiochemical method (GRCM) for detecting of ionizing radiation. This method based on threshold nuclear reactions with production of radioactive noble gas which does not interact with the materials of gaseous tract. The applications of GRCM in the diagnostics of neutrinos, neutrons, charged particles, thermonuclear plasma thermometry, and the study of the structure and dynamics of astrophysical objects, position-sensitive dosimetry of neutron targets with accelerator driving, spatial distribution of the fast neutron flux density in a nuclear reactor allowing the transformation of longitudinal coordinate of neutron flux distribution into a temporal distribution of the radiochemical gas decay counting rate ("barcode" semblance) and measurement of bombarding particles spectra are described. Experimental testing of the described technologies was made on the neutron target driven with the linear proton accelerator of Institute for Nuclear Research of Russian Academy of Sciences (INR RAS).

Activation Reduction Method for a Concrete Wall in a Cyclotron Vault

  • Kumagai, Masaaki;Sodeyama, Kohsuke;Sakamoto, Yukio;Toyoda, Akihiro;Matsumura, Hiroshi;Ebara, Takayoshi;Yamashita, Taichi;Masumoto, Kazuyoshi
    • Journal of Radiation Protection and Research
    • /
    • 제42권3호
    • /
    • pp.141-145
    • /
    • 2017
  • Background: The concrete walls inside the vaults of cyclotron facilities are activated by neutrons emitted by the targets during radioisotope production. Reducing the amount of radioactive waste created in such facilities is very important in case they are decommissioned. Thus, we proposed a strategy of reducing the neutron activation of the concrete walls in cyclotrons during operation. Materials and Methods: A polyethylene plate and B-doped Al sheet (30 wt% of B and 2.5 mm in thickness) were placed in front of the wall in the cyclotron room of a radioisotope production facility for pharmaceutical use. The target was Xe gas, and a Cu block was utilized for proton dumping. The irradiation time, proton energy, and beam current were 8 hours, 30 MeV, and $125{\mu}A$, respectively. To determine a suitable thickness for the polyethylene plate set in front of the B-doped Al sheet, the neutron-reducing effects achieved by inserting such sheets at several depths within polyethylene plate stacks were evaluated. The neutron fluence was monitored using an activation detector and 20-g on de Au foil samples with and without 0.5-mm-thick Cd foil. Each Au foil sample was pasted onto the center of a polyethylene plate and B-doped Al sheet, and the absolute activity of one Au foil sample was measured as a standard using a Ge detector. The resulting relative activities were obtained by calculating the ratio of the photostimulated luminescence of each foil sample to that of the standard Au foil. Results and Discussion: When the combination of a 4-cm-thick polyethylene plate and B-doped Al sheet was employed, the thermal neutron rate was reduced by 78%. Conclusion: The combination of a 4-cm-thick polyethylene plate and B-doped Al sheet effectively reduced the neutron activation of the investigated concrete wall.

Neutron 빔조사 담배 및 벼식물체의 특성 (Characteristics of Tobacco and Rice Plants Irradiated with Neutron Beam)

  • 채종서;김재홍;양태건;류재일;이효연;양덕춘;배창휴
    • 한국자원식물학회지
    • /
    • 제18권3호
    • /
    • pp.359-366
    • /
    • 2005
  • 재배종담배(Nicotiana tabacum L. cv.), 야생종담배 (N. plumbaginifolia)와 벼종자(Orya sativa L, cv.)에 neutron빔을 각각 조사(irradiation)하여 발아, 식물체의 생장과 DNA의 변이에 미치는 영향을 검토하였다. 담배종자와 벼종자에 90, 180, 270, 360, 450, 540 Gy까지 조사로 발아율은 크게 감소하지 않았고, 생장에 있어 유의적인 차이는 없었다. 그러나 담배식물체에서 총 200개체 중 71개체(약 $36\%$)가 잎에서 형태 이상을 나타내었다. 또한 줄기색 변이체, 엽색변이체, 화형변이체를 유도하였다. 이 결과는 neutron빔이 유용한 돌연변이원으로서 가능성이 있음을 시사해 준다. Neutron빔을 조사한 후 생장한 담배식물체의 잎에 대하여 총 34개의 primer를 이용하여 RAPD 분석한 결과 20개의 primer에서 총 104개의 DNA 단편이 증폭되었고, 중성자 빔조사처리구에서만 출현하는 DNA 단편은 나타나지 않았다.

Design and neutronic analysis of the intermediate heat exchanger of a fast-spectrum molten salt reactor

  • Terbish, Jamiyansuren;van Rooijen, W.F.G.
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2126-2132
    • /
    • 2021
  • Various research groups and private interprises are pursuing the design of a Molten Salt Reactor (MSR) as one of the Generation-IV concepts. In the current work a fast neutron MSR using chloride fuel is analyzed, specially analyzing the power production and neutron flux level in the Intermediate Heat Exchanger (IHX). The neutronic analysis in this work is based on a chloride-fuel MSR with 600 MW thermal power. The core power density was set to 100 MW m-3 with a core H/D [[EQUATION]] 1.0 amd four Intermediate Heat Exchanger (IHX). This leads to a power of 150 MW per IHX; this power is also comparable to the IHX proposed in the SAMOFAR framework. In this work, a preliminary design of a 150 MW helical-coil IHX for a chloride-fueled MSR is prepared and the fission rate, capture rate, and inelastic scatter rate are evaluated.

On the Feasibility of Minor Actinides Transmutation in a Low Aspect Ratio Tokamak Fusion Reactor

  • Hong, B.G.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.311.2-311.2
    • /
    • 2013
  • Transmutation characteristics of minor actinides in a transmutation reactor based on a Low Aspect Ratio (LAR) tokamak are investigated. One-dimensional neutron transport and burn-up calculation coupled with the tokamak systems analysis were performed to find the optimal system parameters. The dependence of the transmutation characteristics such as neutron multiplication factor, produced power and transmutation rate on an aspect ratio A in the range of 1.5 to 2.0 was investigated. By adding Pu239 in the transmutation blanket as a neutron multiplication material, it was shown that the one unit of the transmutation reactor based on the LAR tokamak producing fusion power of 150 MWth can destroy the minor actinides contained in the spent fuels produced from more than 19 units of l GWe PWRs with production of the power being in the range of 0.9 - 3.4 GWth.

  • PDF