• 제목/요약/키워드: Neutron irradiation swelling

검색결과 9건 처리시간 0.009초

Investigation on effect of neutron irradiation on welding residual stresses in core shroud of pressurized water reactor

  • Jong-Sung Kim;Young-Chan Kim;Wan Yoo
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.80-99
    • /
    • 2023
  • This paper presents the results of investigating the change in welding residual stresses of the core shroud, which is one of subcomponents in reactor vessel internals, performing finite element analysis. First, the welding residual stresses of the core shroud were calculated by applying the heat conduction based lumped pass technique and finite element elastic-plastic stress analysis. Second, the temperature distribution of the core shroud during the normal operation was calculated by performing finite element temperature analysis considering gamma heating. Third, through the finite element viscoelastic-plastic stress analysis using the calculated temperature distribution and setting the calculated residual stresses as the initial stress state, the variation of the welding residual stresses was derived according to repeating the normal operation. In the viscoelastic-plastic stress analysis, the effects of neutron irradiation on mechanical properties during the cyclic normal operations were considered by using the previously developed user subroutines for the irradiation agings such as irradiation hardening/embrittlement, irradiation-induced creep, and void swelling. Finally, the effect of neutron irradiation on the welding residual stresses was analysed for each irradiation aging. As a result, it is found that as the normal operation is repeated, the welding residual stresses decrease and show insignificant magnitudes after the 10th refueling cycle. In addition, the irradiation-induced creep/void swelling has significant mitigation effect on the residual stresses whereas the irradiation hardening/embrittlement has no effect on those.

연구용 원자로의 건전성 평가를 위한 수치해석적 중성자 조사 재료변형 예측기법 개발 (A Numerical Technique for Predicting Deformation due to Neutron Irradiation for Integrity Assessment of Research Reactors)

  • 박준근;석태현;허남수
    • 한국압력기기공학회 논문집
    • /
    • 제20권1호
    • /
    • pp.39-48
    • /
    • 2024
  • Research reactors are operated under ambient temperature and atmospheric pressure, which is much less severe conditions compared to those in typical nuclear power plants. Due to the high temperature, heat resistant materials such as austenite stainless steel should be used for the reactors in typical nuclear power plants. Whereas, as the effect of temperature is low for research reactors, materials with high resistance to neutron irradiation, such as zircaloy and beryllium, are used. Therefore, these conditions should be considered when performing integrity assessment for research reactors. In this study, a computational technique through finite element (FE) analysis was developed considering the operating conditions and materials of research reactor when conducting integrity assessment. Neutron irradiation analysis techniques using thermal expansion analysis were proposed to consider neutron irradiation growth and swelling in zirconium alloys and beryllium. A user subroutine program that can calculate the strain rate induced by neutron irradiation creep was developed for use in the commercial analysis program Abaqus. To validate the proposed technique and the user subroutine, FE analysis results were compared with hand-calculation results, and showed good agreement. Consequently, developed technique and user subroutine are suitable for evaluating structural integrity of research reactors.

A model for calculating the irradiation swelling of AgInCd absorber in nuclear control rods

  • Hongsheng Chen;Hongxing Xiao;Chongsheng Long;Xuesong Leng
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.552-557
    • /
    • 2024
  • The actual swelling of AgInCd absorber might exceed the predicted swelling value after years of service in pressurized water reactors, and the chemical and microstructural changes of AgInCd absorber induced by transmutation reactions are the main reason for the swelling acceleration of AgInCd absorber. In the present study, a model for calculating the irradiation swelling of AgInCd absorber in nuclear control rods is developed according to chemical and microstructural changes of AgInCd absorber. In this model, the chemical compositions of AgInCd absorber as a function of the thermal neutron fluence are firstly calculated, and then the volume of AgInCd absorber after irradiation is obtained on the basis of the crystallographic parameters of phases in the AgInCd absorber, and the irradiation swelling of AgInCd absorber is finally calculated. The crystallographic parameters can be obtained by preparing the simulated AgInCd alloys and fitting the experimental data. The model calculating results of irradiation swelling are in good agreement with the actual swelling data in literature. More importantly, the present model can well explain the EPRI results of the acceleration in the diametral swelling rate above 6-8 × 1020 n/cm2 and the decrease in the diametral swelling rate above about 2 × 1021 n/cm2.

Radiation damage analysis in SiC microstructure by transmission electron microscopy

  • Idris, Mohd Idzat;Yoshida, Katsumi;Yano, Toyohiko
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.991-996
    • /
    • 2022
  • Microstructures of monolithic high purity SiC and SiC with sintering additives after neutron irradiation to a fluence of 2.0-2.5 × 1024 n/m2 (E > 0.1 MeV) at 333-363 K and after post-irradiation annealing up to 1673 K were observed using a transmission electron microscopy. Results showed that no black spot defects or dislocation loops in SiC grains were found after the neutron irradiation for all of the specimens owing to the moderate fluence at low irradiation temperature. Thus, it is confirmed that these specimens were swelled mostly by the formation of point defects. Black spots and small dislocation loops were discovered only after the annealing process in PureBeta-SiC and CVD-SiC, where the swelling almost diminished. Anomalous-shaped YAG grains were found in SiC ceramics containing sintering additives. These grains contained dense black spots defects and might lose crystallinity after the neutron irradiation, while these defects may annihilate by recrystallization during annealing up to 1673 K. Amorphous grain boundary phase was also presented in this ceramic, and a large part of it was crystallized through post-irradiation annealing and could affect their recovery behavior.

A Concise Design for the Irradiation of U-10Zr Metallic Fuel at a Very Low Burnup

  • Guo, Haibing;Zhou, Wei;Sun, Yong;Qian, Dazhi;Ma, Jimin;Leng, Jun;Huo, Heyong;Wang, Shaohua
    • Nuclear Engineering and Technology
    • /
    • 제49권4호
    • /
    • pp.734-743
    • /
    • 2017
  • In order to investigate the swelling behavior and fuel-cladding interaction mechanism of U-10Zr alloy metallic fuel at very low burnup, an irradiation experiment was concisely designed and conducted on the China Mianyang Research Reactor. Two types of irradiation samples were designed for studying free swelling without restraint and the fuel-cladding interaction mechanism. A new bonding material, namely, pure aluminum powder, was used to fill the gap between the fuel slug and sample shell for reducing thermal resistance and allowing the expansion of the fuel slug. In this paper, the concise irradiation rig design is introduced, and the neutronic and thermal-hydraulic analyses, which were carried out mainly using MCNP (Monte Carlo N-Particle) and FLUENT codes, are presented. Out-of-pile tests were conducted prior to irradiation to verify the manufacturing quality and hydraulic performance of the rig. Nondestructive postirradiation examinations using cold neutron radiography technology were conducted to check fuel cladding integrity and swelling behavior. The results of the preliminary examinations confirmed the safety and effectiveness of the design.

Impacts of Burnup-Dependent Swelling of Metallic Fuel on the Performance of a Compact Breed-and-Burn Fast Reactor

  • Hartanto, Donny;Heo, Woong;Kim, Chihyung;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.330-338
    • /
    • 2016
  • The U-Zr or U-TRU-Zr cylindrical metallic fuel slug used in fast reactors is known to swell significantly and to grow during irradiation. In neutronics simulations of metallic-fueled fast reactors, it is assumed that the slug has swollen and contacted cladding, and the bonding sodium has been removed from the fuel region. In this research, a realistic burnup-dependent fuel-swelling simulation was performed using Monte Carlo code McCARD for a single-batch compact sodium-cooled breed-and-burn reactor by considering the fuel-swelling behavior reported from the irradiation test results in EBR-II. The impacts of the realistic burnup-dependent fuel swelling are identified in terms of the reactor neutronics performance, such as core lifetime, conversion ratio, axial power distribution, and local burnup distributions. It was found that axial fuel growth significantly deteriorated the neutron economy of a breed-and-burn reactor and consequently impaired its neutronics performance. The bonding sodium also impaired neutron economy, because it stayed longer in the blanket region until the fuel slug reached 2% burnup.

Irradiation Assisted Stress Corrosion Cracking of Austenitic Stainless Steels in Water Reactors

  • Yonezawa, Toshio
    • Corrosion Science and Technology
    • /
    • 제7권2호
    • /
    • pp.77-84
    • /
    • 2008
  • Based upon the good compatibility to neutron irradiation and high temperature water environment, austenitic stainless steels are widely used for core internal structural materials of light water reactors. But, recently, intergranular cracking was detected in the stainless steels for the core applications in some commercial PWR plants. Authors studied on the root cause of the intergranular cracking and developed the countermeasure including the alternative materials for these core applications. The intergranular cracking in these core applications are defined as an irradiation assisted mechanical cracking and irradiation assisted stress corrosion cracking. In this paper, the root cause of the intergranular cracking and its countermeasure are summarized and discussed.

Estimation of the chemical compositions and corresponding microstructures of AgInCd absorber under irradiation condition

  • Chen, Hongsheng;Long, Chongsheng;Xiao, Hongxing;Wei, Tianguo;Le, Guan
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.344-351
    • /
    • 2020
  • AgInCd alloy is widely used as neutron absorber in nuclear reactors. However, the AgInCd control rods may fail during service due to the irradiation swelling. In the present study, a calculational method is proposed to calculate the composition change of the AgInCd absorber. Calculated results show that neutron fluence has significant impact on the chemical compositions. Ag and In contents gradually decrease while Cd and Sn conversely increases from the center to the rim of AgInCd absorber due to the depression of neutron flux. The composition change at the surface is higher almost two times than that at the center. Based on the calculated compositions, six simulated AgInCdSn alloys were prepared and examined. With the increase of Cd and Sn, the simulated AgInCdSn alloys transform from a single fcc phase into the mixed fcc and hcp phases, and finally into the single hcp phase. The atomic volume of the hcp phase is obviously larger than the fcc phase. The fcc-hcp transformation results in considerable volume swelling of the AgInCd absorber. Moreover, the lattice parameters of the fcc and hcp phases gradually increase with Cd and Sn contents, which also can induce small volume swelling.

Effects of neutron irradiation on densities and elastic properties of aggregate-forming minerals in concrete

  • Weiping Zhang;Hui Liu;Yong Zhou;Kaixing Liao;Ying Huang
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.2147-2157
    • /
    • 2023
  • The aggregate-forming minerals in concrete undergo volume swelling and microstructure change under neutron irradiation, leading to degradation of physical and mechanical properties of the aggregates and concrete. A comprehensive investigation of volume change and elastic property variation of major aggregate-forming minerals is still lacking, so molecular dynamics simulations have been employed in this paper to improve the understanding of the degradation mechanisms. The results demonstrated that the densities of the selected aggregate-forming minerals of similar atomic structure and chemical composition vary in a similar trend with deposited energy due to the similar amorphization mechanism. The elastic tensors of all silicate minerals are almost isotropic after saturated irradiation, while those of irradiated carbonate minerals remain anisotropic. Moreover, the elastic modulus ratio versus density ratio of irradiated minerals is roughly following the density-modulus scaling relationship. These findings could further provide basis for predicting the volume and elastic properties of irradiated concrete aggregates in nuclear facilities.