• 제목/요약/키워드: Neutron irradiation

Search Result 296, Processing Time 0.031 seconds

Neutron-irradiated effect on the thermoelectric properties of Bi2Te3-based thermoelectric leg

  • Huanyu Zhao;Kai Liu;Zhiheng Xu;Yunpeng Liu;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3080-3087
    • /
    • 2023
  • Thermoelectric (TE) materials working in radioisotope thermoelectric generators are irradiated by neutrons throughout its service; thus, investigating the neutron irradiation stability of TE devices is necessary. Herein, the influence of neutron irradiation with fluences of 4.56 × 1010 and 1 × 1013 n/cm2 by pulsed neutron reactor on the electrical and thermal transport properties of n-type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3 thermoelectric alloys prepared by cold-pressing and molding is investigated. After neutron irradiation, the properties of thermoelectric materials fluctuate, which is related to the material type and irradiation fluence. Different from p-type thermoelectric materials, neutron irradiation has a positive effect on n-type Bi2Te2.7Se0.3 materials. This result might be due to the increase of carrier mobility and the optimization of electrical conductivity. Afterward, the effects of p-type and n-type TE devices with different treatments on the output performance of TE devices are further discussed. The positive and negative effects caused by irradiation can cancel each other to a certain extent. For TE devices paired with p-type Bi0.5Sb1.5Te3 and n-type Bi2Te2.7Se0.3 thermoelectric legs, the generated power and conversion efficiency are stable after neutron irradiation.

The effect of neutron irradiation on hydride reorientation and mechanical property degradation of zirconium alloy cladding

  • Jang, Ki-Nam;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1472-1482
    • /
    • 2017
  • Zirconium alloy cladding tube specimens were irradiated at $380^{\circ}C$ up to a fast neutron fluence of $7.5{\times}10^{24}n/m^2$ in a research reactor to investigate the effect of neutron irradiation on hydride reorientation and mechanical property degradation. Cool-down tests from $400^{\circ}C$ to $200^{\circ}C$ under 150 MPa tensile hoop stress were performed. These tests indicate that the irradiated specimens generated a smaller radial hydride fraction than did the unirradiated specimens and that higher hydrogen content generated a smaller radial hydride fraction. The irradiated specimens of 500 ppm-H showed smaller ultimate tensile strength and plastic strain than those characteristics of the 250 ppm-H specimens. This mechanical property degradation caused by neutron irradiation can be explained by tensile hoop stress-induced microcrack formation on the hydrides in the irradiation-damaged matrix and subsequent microcrack propagation along the hydrides and/or through the matrix.

Neutron Irradiation Effect of YBa2Cu3O7-y Superconductor (YBa2Cu3O7-y 초전도 벌크의 중성자 조사 효과)

  • Lee, Sang Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.438-441
    • /
    • 2021
  • The electrical characteristics of single-crystal composite superconductors produced by a melting process were studied by neutron irradiation. In order to improve the current characteristics of the YBa2Cu3O7-y superconductor, it is necessary to form an effective flux pinning center inside the superconductor. In this study, an increase in flux pinning was attempted through neutron irradiation onto YBa2Cu3O7-y superconductors. The neutron irradiation was performed at 30 MeV for 500 sec, The electrical properties of the superconductors were measured in a magnetic field of 5 Tesla at 50 K using a magnetic properties measurement system (MPMS). After neutron irradiation, the critical current density of the YBa2Cu3O7-y superconductor in a 1 Tesla magnetic field was 1×105 A/cm2. Once neutrons were irradiated at 30 MeV and 10 μA for 500 sec, the critical current density was observed to increase significantly. When neutrons are irradiated to a superconductor, micro-defects are created in the superconductor, and they act as flux pinning centers that hold the magnetic field generated when an electric current flows.

A Study on Point Defect Induced with Neutron Irradiation (중성자 조사에 의해 생성된 점결함 연구)

  • 김진현;이운섭;류근걸;김봉구;이병철;박상준
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.3
    • /
    • pp.165-169
    • /
    • 2002
  • Silicon wafer is very important accuracy make use semiconductor device substrate. In this research, for the uniformity dopant density distribution obtained to Neutron Transmutation Doping on make use Si in P Doping study work. In this research. we irradiated neutron on FZ silicon wafers which had high resistivity (1000~2000 ${\Omega}$cm), HANARO reactor was utilized resistivity changes due to observed, the generation of neutron irradiation on point defect analyzed, point defect on resistivity changes inquire into the effect. Before neutron irradiation theoretical due to calculated 5 ${\Omega}$-cm, 20.1 ${\Omega}$-cm for HTS hole and 5 ${\Omega}$-cm, 26.5 ${\Omega}$-cm, 32.5 ${\Omega}$-cm for IP3 hole. After neutron irradiation through SRP measurement the designed resistivities were approached, which were 2.1 H-cm for HTS-1, 7.21 ${\Omega}$-cm for HTS-2, 1.79 ${\Omega}$-cm for IP-1, 6.83 ${\Omega}$-cm for IP-2, 9.23 ${\Omega}$-cm for IP-3, respectively. Also after neutron irradiation resistivity changes due to thermal neutron dependent irradiation hole types free.

  • PDF

Biological Effects Of Blood And Testis By Abdominal Irradiation With Neutron Or Gamma-ray In Black Mouse

  • Chun, Ki-Jung;Yoo, Bo-Kyung
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.109.1-109.1
    • /
    • 2003
  • The aim of this study was to investigate the biological effects of blood and testis by neutron or gamma-ray irradiation in black mouse. Six-week-old C57BL male mice were irradiated with neutron (flux: 1.036739E+09) or Co60 gamma rays(dose rate: lGy/min.) The irradiation method of animal was abdominal irradiation and dose of irradiation was 10 and 20 Gy added with 5 and 15Gy in neutron irradiation.. After that, the mice were sacrificed 3 days later. Blood and testis were taken and then composition of blood in blood cell were investigated. (omitted)

  • PDF

The Effects of Korean Ginseng Components for the Mouse Irradiated 1 by Neutron(Besource) (중성자방사선에 피폭된 생쥐에 대한 인삼제제의 효과에 관하여)

  • 공태희;유성열
    • Journal of Ginseng Research
    • /
    • v.14 no.3
    • /
    • pp.357-363
    • /
    • 1990
  • When mice irradiated by neutron (Be) are fed with ginseng concentrate, ginseng powder, and adaptagen of which the major ingredient is ginseng alkaloid to neutron (Be source) irradiated mouse, the following results are obtained. 1. The 50% lethal dose (LD50) for the neutron irradiation were 4 days at 600 rad, 7 days at 500 rad, 16 days at 400 rad, 33 days at 375 rad, and 55 days at 350 rad. In thistest, the standard amollntofirradiation was set at 375 rad/8 min. 2. Some spots appeared in the tail of the neutron-irradiated mouse because of blood congestion, and some had its tip tails cut. But the group administered with adaptagen did not show any of these symptoms. 3. The neutron irradiated mouse showed darkening the color of their lung-chloasmas while none of the adaptagen group had this symptom. 4. The lung tissue of the neutron irradiated mouse showed an increase of the karyolysis and cytoplasmic vacuole. 5. When both neutron irradiation and the ginseng sllbstances were given to the mouse at the same day, the 50% lethal days were increased to 29-33 days for the group administered with ginseng extract. 67 days for the group given with the ginseng powder. and 80 days for the groilp arith the adaptagen. 6. The survival rate of those fed with adaptagen for 33 days before the neutron-irradiation was 100%, while the 50% lethal daysofthe group fed with ginsengextract were 39 days and that of the group fed with ginseng powder were 69 days. 7. The serum valued of ${\gamma}$-globulin, IgG, and albumin were returned to normal condition in the group fed with adaptagen for 33 days before the neutron-irradiation. But those of the group which were given the irradiation and the ginseng substances at the same day did not show such a recovery.

  • PDF

The Analysis of Spectrum on the Barkhausen Noise of Hysteresis Loops on Neutron Irradiated Material

  • Sim, Cheul-Muu;Chang, Kee-Ok;Park, Kook-Nam;Cho, Man-Soon;Park, Chang-Oong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.1E
    • /
    • pp.7-12
    • /
    • 1999
  • In relation to a non-destructive evaluation of irradiation damages, the changes in the hysteresis loop and Barkhausen noise amplitude and the harmonics frequency due to a neutron irradiation were measured and evaluated. The Mn-Mo-Ni low alloy steel of RPV was irradiated to a neutron fluence of 2.3 ×10/sup 19/ n/㎠ (E ≥1 MeV) at 288℃. The saturation magnetization of neutron irradiated metal did not change. The neutron irradiation caused the coercivity to increase, whereas susceptibility to decrease. The amplitude of Barkhausen noise parameters associated with the domain wall motion were decreased by a neutron irradiation. The spectrum of Barkhausen noise is analysed with an applied frequency of 4 Hz and 8 Hz, sampling time of 50 μ sec and 20 μ sec. The harmonic frequency shows 4 Hz, 8 Hz, 12 Hz and 16 Hz reflected from an unirradiated specimen. On the contrary, the harmonic frequency disappeared on the irradiated specimen. In addition to the amplitude, the harmonic frequency of Barkhausen noise is taken into accounts as a promising tool for monitoring the irradiation induced degradation of the reactor materials such as a SA508 of PWR-RPV steel and a Zr₄ of HANARO-CNH.

  • PDF

Study on Changes of Sperm Count and Testis Tissue in Black Mouse after Neutron Irradiation (중성자 조사후 Black mouse의 고환 조직 및 정자수 변화에 관한 연구)

  • Chun, Ki-Jung;Seo, Won-Sook;Son, Hwa-Young
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.1
    • /
    • pp.31-35
    • /
    • 2006
  • For the purpose of the biological effect in black mouse by neutron irradiation, mice were irradiated with 16 or 32 Gy neutron (flux: 1.036739E+09) by tying flat pose at BNCT facility on HANARO Reactor. And 90 days later of irradiation, physical changes of testis and testis tissue were examined. There were no weight changes but a little bit volume changes and sperm counts in the testes. Atrophy of seminiferous tubules irradiated with 32 Gy neutron is increased in number and severity and those in stage VI showed depletion of spermatogonia and pachytene spermatocytes compared to the non-irradiated control group. Testis damage of black mouse was not recovered after long time by 32 Gy neutron irradiation.

Study on Stiffened-Plate Structure Response in Marine Nuclear Reactor Operation Environment

  • Han Koo Jeong;Soo Hyoung Kim;Seon Pyoung Hwang
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.205-214
    • /
    • 2023
  • As the regulations on greenhouse gas emissions at sea become strict, efforts are being made to minimize environmental pollutants emitted from fossil fuels used by ships. Considering the large sizes of ships in conjunction with securing stable supplies of environment-friendly energy, interest in nuclear energy to power ships has been increasing. In this study, the neutron irradiation that occurs during the nuclear reactor operation and its effect on the structural responses of the stiffened-plate structures are investigated. This is done by changing the material properties of DH36 steel according to the research findings on the neutron-irradiated steels and then performing the structural response analyses of the structures using analytical and finite-element numerical solutions. Results reveal the influence of neutron irradiation on the structural responses of the structures. It is shown that both the strength and stiffness of the structures are affected by the neutron-irradiation phenomenon as their maximum flexural stress and deflection are increased with the increase in the amount of neutron irradiation. This implies that strength and stiffness need to be considered in the design of ships equipped with marine nuclear reactors.

Turn-off time improvement by fast neutron irradiation on pnp Si Bipolar Junction Transistor

  • Ahn, Sung Ho;Sun, Gwang Min;Baek, Hani
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.501-506
    • /
    • 2022
  • Long turn-off time limits high frequency operation of Bipolar Junction Transistors (BJTs). Turn-off time decreases with increases in the recombination rate of minority carriers at switching transients. Fast neutron irradiation on a Si BJT incurs lattice damages owing to the displacement of silicon atoms. The lattice damages increase the recombination rate of injected holes with electrons, and decrease the hole lifetime in the base region of pnp Si BJT. Fast neutrons generated from a beryllium target with 30 MeV protons by an MC-50 cyclotron were irradiated onto pnp Si BJTs in experiment. The experimental results show that the turn-off time, including the storage time and fall time, decreases with increases in fast neutron fluence. Additionally, it is confirmed that the base current increases, and the collector current and base-to-collector current amplification ratio decrease due to fast neutron irradiation.