• 제목/요약/키워드: Neutron fluence

검색결과 88건 처리시간 0.03초

RADIATION-INDUCED DISLOCATION AND GROWTH BEHAVIOR OF ZIRCONIUM AND ZIRCONIUM ALLOYS - A REVIEW

중성자 조사한 ZnO 박막에 생성된 핵전환 불순물들에 대한 연구 (A Study on Transmuted Impurity Atoms Formed in Neutron-Irradiated ZnO Thin Films)

  • 김상식;선규태;박광수;임기주;성만영;이부형;조운갑;한현수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권7호
    • /
    • pp.298-304
    • /
    • 2002
  • Transmuted impurity atoms formed in neutron-irradiated ZnO thin films were theoretically identified first and then experimentally confirmed by photoluminescence (PL). ZnO thin films grown by plasma-assisted molecular beam epitaxy were irradiated by neutron beam at room temperature. The ZnO films consist of eight constituent (Zn and O) isotropes, of which four are transmutable by neutron-irradiation; $^{64}$ , $^{68}$ Zn, $^{70}$ Zn and $^{18}$ O were expected to transmute into $^{65}$ Cu, $^{69}$ Ga, $^{71}$ Ga, and $^{19}$ F, respectively. The concentrations of these transmuted atoms were estimated in this study by considering natural abundance, neutron fluence and neutron cross section. The neutron-irradiated ZnO thin films were characterized by PL. In the PL spectra of the ZnO thin films, the Cu-related PL peaks were seen, but the Ga- or F-associated PL peaks were absent. This observation confirmed the existence of $^{65}$ Cu in the ZnO, but it could not do the formation of the other two. In this paper, the emission mechanism of Cu impurities is described and the reason for the absence of the Ga- or F-associated PL peaks is discussed as well.

Neutron-irradiated effect on the thermoelectric properties of Bi2Te3-based thermoelectric leg

  • Huanyu Zhao;Kai Liu;Zhiheng Xu;Yunpeng Liu;Xiaobin Tang
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.3080-3087
    • /
    • 2023
  • Thermoelectric (TE) materials working in radioisotope thermoelectric generators are irradiated by neutrons throughout its service; thus, investigating the neutron irradiation stability of TE devices is necessary. Herein, the influence of neutron irradiation with fluences of 4.56 × 1010 and 1 × 1013 n/cm2 by pulsed neutron reactor on the electrical and thermal transport properties of n-type Bi2Te2.7Se0.3 and p-type Bi0.5Sb1.5Te3 thermoelectric alloys prepared by cold-pressing and molding is investigated. After neutron irradiation, the properties of thermoelectric materials fluctuate, which is related to the material type and irradiation fluence. Different from p-type thermoelectric materials, neutron irradiation has a positive effect on n-type Bi2Te2.7Se0.3 materials. This result might be due to the increase of carrier mobility and the optimization of electrical conductivity. Afterward, the effects of p-type and n-type TE devices with different treatments on the output performance of TE devices are further discussed. The positive and negative effects caused by irradiation can cancel each other to a certain extent. For TE devices paired with p-type Bi0.5Sb1.5Te3 and n-type Bi2Te2.7Se0.3 thermoelectric legs, the generated power and conversion efficiency are stable after neutron irradiation.

EXPERIMENTAL APPROACHES FOR WATER DISCHARGE CHARACTERISTICS IN PEMFC USING NEUTRON IMAGING TECHNIQUE AT CONRAD, HMI

  • Kim, Tae-Joo;Kim, Jong-Rok;Sim, Cheul-Muu;Lee, Sung-Ho;Son, Young-Jin;Kim, Moo-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.135-142
    • /
    • 2009
  • In this investigation, we prepared a 1 and 3-parallel serpentine single PEMFC, which has an active area of $100\;cm^2$ and a flow channel cross section of $1{\times}1mm$. Distribution and transport of water in a non-operating PEMFC were observed by varying flow types and the flow rates (250, 400, and 850 cc/min). This investigation was performed at the neutron imaging facility at the CO1d Neutron RAdiography facility (CONRAD), HMI, Germany of which the collimation ratio and neutron fluence rate are 250, $1{\times}10^{6}n/s/cm^2$, respectively. The neutron image was continuously recorded by a scintillator and lens-CCD coupled detector system every 10 seconds. It has been observed that although the distilled water was supplied into the cathode channel only, the neutron image showed a water movement from the cathode to the anode channel. The water at the cathode channel was completely discharged as soon as the pressurized air was supplied. But the water at the anode channel was not easily removed by the pressurized air except for the 3-parallel serpentine type with 850cc/min of air flow rate. Moreover, the water at the MEA wasn't removed for any of the cases.

Fast Neutron Dosimetry with Two Threshold Detectors in Criticality Accidents of Nuclear Reactors

  • Ro, Seung-Gy
    • Nuclear Engineering and Technology
    • /
    • 제2권2호
    • /
    • pp.85-95
    • /
    • 1970
  • 두개의 threshold detector로서 인자로의 폭발사고시에 방출되는 속 중성자의 속도분포를 측정하고 그로부터 속 중성자의 인체흡수선량을 계산하였다. 이때 속 중성자의 속도분포는 하나의 스펙트럼 매개변수에 의하여 결정된다는 가정으로부터 얻어지는데 이 매개변수는 threshold detector의 반응율을 측정하므로서 구해진다. 속 중성자의 인체흡수선량은 속 중성자의 속도분포 변화에 따라 큰 변동이 없었으나 threshold detector의 평균반응단면적은 크게 변하였다. 따라서 속 중성자의 속도분포에 관계없이 threshold detector의 평균반응단면적을 고정된 값으로 취하여 속 중성자선량을 계산한다면 큰 오차를 일으키게 될 것이라는 것을 보여주었다. 한편 핵분열에서 방출되는 속 중성자의 속도분포에 대한 세 해석적 표현인 즉 Watt, Cranberg및 Maxwellian 공식들로부터 속 중성자 선량을 계산하여 서로 비교하였다. Watt 및 Cranberg 공식들로 부터 얻어진 속 중성자선량은 Maxwellian 공식으로부터 얻어진 그것보다 약간 높은 값을 보여 주었으며 Watt 공식에 의한 선량계산치는 Cranberg 공식에 의한 그것과 비슷한 값을 보여주었다.

  • PDF

Earthquake response of a core shroud for APR1400

  • Jhung, Myung Jo;Choi, Youngin;Oh, Chang-Sik
    • Nuclear Engineering and Technology
    • /
    • 제53권8호
    • /
    • pp.2716-2727
    • /
    • 2021
  • The core shroud is one of the most important internal components of the reactor vessel internals because it meets the neutron fluence directly emitted by the nuclear fuel. In particular, dynamic effects for an earthquake should be evaluated with respect to the neutron irradiation flux. As a prerequisite to this study, simplified and detailed finite element models are developed for the core shroud using the ANSYS Design Parametric Language. Using the El Centro earthquake, seismic analyses are performed for the simplified and detailed core shroud models. Modal characteristics are obtained and their results are used for a time history analysis. Response spectrum analyses are also performed to access the degree of seismic excitation. The results of these analyses are compared to investigate the response characteristics between the simplified and detailed core shroud models from the time history and response spectrum analyses.

Analysis for the secondary gamma-ray emission for glasses irradiated with various doses of fast neutron: Case study borate and silicate glasses

  • O.L. Tashlykov;V. Yu. Litovchenko;N.M. Aristov;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2366-2372
    • /
    • 2023
  • Are borate and silicate glasses suitable for working as shieling materials against fast neutrons? To correctly answer the above question, some silicate, and borate-based glasses were fabricated and irradiated with various doses of fast neutrons varied between 1.73 and 12.10 MGy. The color and hardness of the fabricated glasses were affected by the fast neutron fluence where the transparent glasses turned colored as well as the hardness of the fabricated glasses was decreased. The gamma-ray spectrometric analysis shows a high activity concentration produced in the barium borate glasses due to the formation of radioisotopes Ba-131 and Ba-133 reaches to 5.92E+05 Bq and 4.25E+03 Bq, respectively for sample Cd-5 Batch 3. Additionally, the gamma-ray spectrometric analysis for the sodium silicate glasses shows low activity concentrations emitted from isotopes formed due to the activation of Y2O3-associated impurities. These activities are low compared to that emitted by barium borate-based glasses.

Activation Reduction Method for a Concrete Wall in a Cyclotron Vault

  • Kumagai, Masaaki;Sodeyama, Kohsuke;Sakamoto, Yukio;Toyoda, Akihiro;Matsumura, Hiroshi;Ebara, Takayoshi;Yamashita, Taichi;Masumoto, Kazuyoshi
    • Journal of Radiation Protection and Research
    • /
    • 제42권3호
    • /
    • pp.141-145
    • /
    • 2017
  • Background: The concrete walls inside the vaults of cyclotron facilities are activated by neutrons emitted by the targets during radioisotope production. Reducing the amount of radioactive waste created in such facilities is very important in case they are decommissioned. Thus, we proposed a strategy of reducing the neutron activation of the concrete walls in cyclotrons during operation. Materials and Methods: A polyethylene plate and B-doped Al sheet (30 wt% of B and 2.5 mm in thickness) were placed in front of the wall in the cyclotron room of a radioisotope production facility for pharmaceutical use. The target was Xe gas, and a Cu block was utilized for proton dumping. The irradiation time, proton energy, and beam current were 8 hours, 30 MeV, and $125{\mu}A$, respectively. To determine a suitable thickness for the polyethylene plate set in front of the B-doped Al sheet, the neutron-reducing effects achieved by inserting such sheets at several depths within polyethylene plate stacks were evaluated. The neutron fluence was monitored using an activation detector and 20-g on de Au foil samples with and without 0.5-mm-thick Cd foil. Each Au foil sample was pasted onto the center of a polyethylene plate and B-doped Al sheet, and the absolute activity of one Au foil sample was measured as a standard using a Ge detector. The resulting relative activities were obtained by calculating the ratio of the photostimulated luminescence of each foil sample to that of the standard Au foil. Results and Discussion: When the combination of a 4-cm-thick polyethylene plate and B-doped Al sheet was employed, the thermal neutron rate was reduced by 78%. Conclusion: The combination of a 4-cm-thick polyethylene plate and B-doped Al sheet effectively reduced the neutron activation of the investigated concrete wall.

중성자에 조사된 원자로 압력용기 재료의 Barkhausen 노이즈에 관한 연구 (A Study on Barkhausen Noise of Reactor Pressure Vessel Materials Irradiated by Neutrons)

  • 옥치일;김장환;박덕근;홍준화;이종규
    • 비파괴검사학회지
    • /
    • 제18권6호
    • /
    • pp.477-483
    • /
    • 1998
  • 원자로 압력용기 재료인 SA508 steel을 온도 $70^{\circ}C$와 대기압하에서 최고 $10^{18}n/cm^2$까지 중성자를 조사시켜 조사량에 따른 자기이력곡선과 Barkhausen noise amplitude(BNA), Barkhausen noise energy(BNE) 및 미세경도 변화를 측정하여 이들 사이의 상관관계를 구하였다. 중성자 조사에 의하여 자기이력곡선은 변화가 없었으며, BNA, BNE 및 경도는 중성자 조사량에 따라 세 단계의 변화를 보였으며, 중성자 조사량이 $10^{17}n/cm^2$에서는 급격히 변하여 이들 사이의 상관관계가 있음을 알 수 있었다. 따라서 BNA와 BNE가 중성자 조사에 의한 재료의 미세 구조 결함을 조사하는데 비파괴적인 방법으로 가능성이 있음을 알 수 있었다.

  • PDF