• 제목/요약/키워드: Neutron diffusion

검색결과 76건 처리시간 0.02초

Development of Galerkin Finite Element Method Three-dimensional Computational Code for the Multigroup Neutron Diffusion Equation with Unstructured Tetrahedron Elements

  • Hosseini, Seyed Abolfazl
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.43-54
    • /
    • 2016
  • In the present paper, development of the three-dimensional (3D) computational code based on Galerkin finite element method (GFEM) for solving the multigroup forward/adjoint diffusion equation in both rectangular and hexagonal geometries is reported. Linear approximation of shape functions in the GFEM with unstructured tetrahedron elements is used in the calculation. Both criticality and fixed source calculations may be performed using the developed GFEM-3D computational code. An acceptable level of accuracy at a low computational cost is the main advantage of applying the unstructured tetrahedron elements. The unstructured tetrahedron elements generated with Gambit software are used in the GFEM-3D computational code through a developed interface. The forward/adjoint multiplication factor, forward/adjoint flux distribution, and power distribution in the reactor core are calculated using the power iteration method. Criticality calculations are benchmarked against the valid solution of the neutron diffusion equation for International Atomic Energy Agency (IAEA)-3D and Water-Water Energetic Reactor (VVER)-1000 reactor cores. In addition, validation of the calculations against the $P_1$ approximation of the transport theory is investigated in relation to the liquid metal fast breeder reactor benchmark problem. The neutron fixed source calculations are benchmarked through a comparison with the results obtained from similar computational codes. Finally, an analysis of the sensitivity of calculations to the number of elements is performed.

단순 우성 중성자 수송방정식을 이용한 노달 수송해법 (Nodal Transport Methods Using the Simplified Even-Parity Neutron Transport Equation)

  • 노태완
    • 방사성폐기물학회지
    • /
    • 제16권2호
    • /
    • pp.211-221
    • /
    • 2018
  • 중성자 확산방정식에 대해 개발된 노달 확산이론을 단순 우성 중성자 수송방정식에 적용할 수 있는 노달 수송이론을 제시한다. 노달이론으로 다항식전개 노달법과 해석함수전개 노달법을 채택하였고 단순 우성 수송방정식은 수송방정식에 대한 합리적 근사이며 기존의 노달해법이 방향 차분된 단순 우성 수송방정식에 정확히 적용될 수 있음을 수치적으로 확인하였다. 본 연구에서는 방법론 개발이 목적이므로 노드 당 최소한의 미지수를 정의하여 사용했지만 미지수를 추가함으로써 정확도를 증가시킬 수 있음은 기존의 노달 확산이론의 경우와 같다. 즉 중성자 수송방정식에 대해 노달이론을 적용하여 소격격자에 대해 계산 정확성이 확보되고 이는 결국 계산 효율성 증대로 나타난다.

Development of the Discrete-Ordinates, Nodal Transport Methods Using the Simplified Even-Parity Neutron Transport Equation

  • Noh, Taewan
    • Nuclear Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.605-617
    • /
    • 2000
  • Nodal transport methods are studied for the solution of two dimensional discrete-ordinates, simplified even-parity transport equation(SEP) which is known to be an approximation to the true transport equation. The polynomial expansion nodal method(PEN) and the analytic function expansion nodal method(AFEN)which have been developed for the diffusion theory are used for the solution of the discrete-ordinates form of SEP equation. Our study shows that while the PEN method in diffusion theory can directly be converted without complication, the AFEN method requires a theoretical modification due to the nonhomogeneous property of the transport equation. The numerical results show that the proposed two methods work well with the SEP transport equation with higher accuracies compared with the conventional finite difference method.

  • PDF

Development of an Analytic Nodal Expansion Method of Neutron Diffusion Equation in Cylindrical Geometry

  • Kim, Jae-Shik;Kim, Jong-Kyung;Kim, Hyun-Dae
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(1)
    • /
    • pp.131-136
    • /
    • 1996
  • An analytic nodal expansion method has been derived for the multigroup neutron diffusion equation in 2-D cylindrical(R-Z) coordinate. In this method we used the second order Legendre polynomials for source, and transverse leakage, and then the diffusion eqaution was solved analytically. This formalism has been applied to 2-D LWR model. $textsc{k}$$_{eff}$, power distribution, and computing time have been compared with those of ADEP code(finite difference method). The benchmark showed that the analytic nodal expansion method in R-Z coordinate has good accuracy and quite faster than the finite difference method. This is another merit of using R-Z coordinate in that the transverse integration over surfaces is better than the linear integration over length. This makes the discontinuity factor useless.s.

  • PDF

Stability analysis in BWRs with double subdiffusion effects: Reduced order fractional model (DS-F-ROM)

  • Gilberto Espinosa-Paredes;Ricardo I. Cazares-Ramirez;Vishwesh A. Vyawahare;Erick-G. Espinosa-Martinez
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1296-1309
    • /
    • 2024
  • The aim of this work is to explore the effect of the double subdiffusion on the stability in BWRs. A BWR novel reduced order model with double subdiffusion effects: reduced order fractional model (DS-F-ROM) to describe the neutron and heat transfer processes was proposed for this study. The double subdiffusion was developed with a fractional-order two-equation model, and with different fractional-orders and relaxation times. The stability analysis was carried out using the root-locus method and change from the s to the W domain and were confirmed using the time-domain evolution of neutron flux for a unit step change in reactivity. The results obtained using the reduced fractional-order model are presented for different anomalous diffusion coefficient values. Results are compared with normal diffusion and P1 equations, which are obtained straightforwardly with DS-ROM when relaxation time tends to zero, and when the anomalous diffusion coefficient tends to one, respectively.

동력로용 보상형 전리함의 제작 및 실험 (Manufacture and Experiment of Compensated Ionization Chamber for the Nuclear Power Reactor)

  • 육종철;고병준;박용집
    • 전기의세계
    • /
    • 제19권4호
    • /
    • pp.18-23
    • /
    • 1970
  • A neutron detector, in general, can not be utilized as the thermal neutron detecting chamber in the nuclear power reactor, especially P.W.R. due to the characteristics of high temperature, high pressure and high neutron flux in a reactor vessel. We have performed an experiment to detect the thermal neutrons at 400.deg. C and high flux of thermal neutron in a power reactor. Coating boron-10 on the aluminium plates by means of surface diffusion method at 600.deg. C for 5 hours in an electric furace, also we made a typical chamber which was compensated ionization chamber filled with free air as an ionization gas. It was checked the chamber characteristics in the TRIGA MARK-II Reactor at the power level from zero to 250KW. The chamber current showed a perfect linear increase to power increase. However, many variation of the measured current were observed within the power of 50KW.

  • PDF

STRAUM-MATXST: A code system for multi-group neutron-gamma coupled transport calculation with unstructured tetrahedral meshes

  • MyeongHyeon Woo;Ser Gi Hong
    • Nuclear Engineering and Technology
    • /
    • 제54권11호
    • /
    • pp.4280-4295
    • /
    • 2022
  • In this paper, a new multi-group neutron-gamma transport calculation code system STRAUM-MATXST for complicated geometrical problems is introduced and its development status including numerical tests is presented. In this code system, the MATXST (MATXS-based Cross Section Processor for SN Transport) code generates multi-group neutron and gamma cross sections by processing MATXS format libraries generated using NJOY and the STRAUM (SN Transport for Radiation Analysis with Unstructured Meshes) code performs multi-group neutron-gamma coupled transport calculation using tetrahedral meshes. In particular, this work presents the recent implementation and its test results of the Krylov subspace methods (i.e., Bi-CGSTAB and GMRES(m)) with preconditioners using DSA (Diffusion Synthetic Acceleration) and TSA (Transport Synthetic Acceleration). In addition, the Krylov subspace methods for accelerating the energy-group coupling iteration through thermal up-scatterings are implemented with new multi-group block DSA and TSA preconditioners in STRAUM.

Analysis of alpha modes in multigroup diffusion

  • Sanchez, Richard;Tomatis, Daniele;Zmijarevic, Igor;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1259-1268
    • /
    • 2017
  • The alpha eigenvalue problem in multigroup neutron diffusion is studied with particular attention to the theoretical analysis of the model. Contrary to previous literature results, the existence of eigenvalue and eigenflux clustering is investigated here without the simplification of a unique fissile isotope or a single emission spectrum. A discussion about the negative decay constants of the neutron precursors concentrations as potential eigenvalues is provided. An in-hour equation is derived by a perturbation approach recurring to the steady state adjoint and direct eigenvalue problems of the effective multiplication factor and is used to suggest proper detection criteria of flux clustering. In spite of the prior work, the in-hour equation results give a necessary and sufficient condition for the existence of the eigenvalue-eigenvector pair. A simplified asymptotic analysis is used to predict bands of accumulation of eigenvalues close to the negative decay constants of the precursors concentrations. The resolution of the problem in one-dimensional heterogeneous problems shows numerical evidence of the predicted clustering occurrences and also confirms previous theoretical analysis and numerical results.

Development of a Consistent General Order Nodal Method for Solving the Three-Dimensional, Multigroup Neutron Diffusion Equation

  • Kim, Hyun-Dae-;Oh, Se-Kee
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1993년도 추계학술발표회 초록집
    • /
    • pp.99-102
    • /
    • 1993
  • A consistent general order nodal method for solving the three-dimensional neutron diffusion equation in (x-y-z) geometry has been derived by using a weighted integral technique and expanding the spatial variable by the Legendre orthogonal series function. The equation set derived can be converted into any order nodal schemes. It forms a compact system for general order of nodal moments. The method utilizes fewer unknown variables in the schemes for iterative-convergence solution than other nodal methods listed in the literatures, and because the method utilizes the analytic solutions of the transverse-integrated one dimensional equations and a consistent approximation for a given spatial variable through all the solution procedures, which renders the use of an approximation for the transverse leakages no longer necessary, we can expect extremely accurate solutions and the solution would converge exactly when the mesh width is decreased or the approximation order is increased.

  • PDF

Development of a Consistent General Order Nodal Method for Solving the Three-Dimensional, Multigroup, Static Neutron Diffusion Equation

  • Kim, H.D.
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(1)
    • /
    • pp.34-39
    • /
    • 1996
  • A consistent general order nodal method for solving the 3-D neutron diffusion equation in (x-y-z) geometry has ben derived by using a weighted integral technique and expanding the spatial variables by the Legendre orthogonal series function. The equation set derived can be converted into any order nodal schemes. It forms a compact system for general order of nodal moments. The method utilizes the analytic solutions of the transverse-integrated quasi -one dimensional equations and a consistent expansion for the spatial variables so that it renders the use of an approximation for the transverse leakages no necessary. Thus, we can expect extremely accurate solutions and the solution would converge exactly when the mesh width is decreased or the approximation order is increased since the equation set is consistent mathematically.

  • PDF