• Title/Summary/Keyword: Neutron Capture

Search Result 122, Processing Time 0.035 seconds

Conceptual Core Design of 1300MWe Reactor for Soluble Boron Free Operation Using a New Fuel Concept

  • Kim, Soon-Young;Kim, Jong-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.391-400
    • /
    • 1999
  • A conceptual core design of the 1,300MWe KNGR (Korean Next Generation Reactor) without using soluble boron for reactivity control was developed to determine whether it is technically feasible to implement SBF (Soluble Boron Free) operation. Based on the borated KNGR core design, the fuel assembly and control rod configuration were modified for extensive use of burnable poison rods and control rods. A new fuel rod, in which Pu-238 had been substituted for a small amount of U-238 in fuel composition, was introduced to assist the reactivity control by burnable poison rods. Since Pu-238 has a considerably large thermal neutron capture cross section, the new fuel assembly showed good reactivity suppression capability throughout the entire cycle turnup, especially at BOC (Beginning of Cycle). Moreover, relatively uniform control of power distribution was possible since the new fuel assemblies were loaded throughout the core. In this study, core excess reactivity was limited to 2.0 %$\delta$$\rho$ for the minimal use of control rods. The analysis results of the SBF KNGR core showed that axial power distribution control can be achieved by using the simplest zoning scheme of the fuel assembly Furthermore, the sufficient shutdown margin and the stability against axial xenon oscillations were secured in this SBF core. It is, therefore, concluded that a SBF operation is technically feasible for a large sized LWR (Light Water Reactor).

  • PDF

The Spectra Investigation of the Halo Planetary Nebula BoBn 1

  • Hyung, Siek;Otsuka, Masaaki;Tajitsu, Akito;Izumiura, Hideyuki
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.72.2-72.2
    • /
    • 2010
  • The extremely metal-poor halo planetary nebula BoBn 1 has been investigated based on IUE archive data, Subaru/HDS spectra, VLT/UVES archive data, and Spitzer/IRS spectra. We have measured a heliocentric radial velocity of $+191.6\pm1.3\;kms^{-1}$ and expansion velocity 2Vexp of $40.5\pm3.3\;kms^{-1}$ from an average over 300 lines. The estimations of C, N, O, and Ne abundances from the optical recombination lines (ORLs) and Kr, Xe, and Ba from the collisional excitation lines (CELs) are also done. We have detected 5 fluorine and several slow neutron capture elements (the s-process). The amounts of [F/H], [Kr/H], and [Xe/H] suggest that BoBn 1 is the most F-rich among F detected PNe and is a heavy s-process element rich PN. The photo-ionization models built with non-LTE theoretical stellar atmospheres indicate that the progenitor was a 1-1.5 $M_\bigstar$ that would evolve into a white dwarf with an $0.62M_{\odot}$ core mass and $0.09M_{\odot}$ ionized nebula. Careful examination implies that BoBn 1 has evolved from a binary and experienced coalescence during the evolution to become a visible PN. The elemental abundances except N could be explained by a binary model composed of $0.75M_{\odot}+1.5M_{\odot}$ stars.

  • PDF

Facile Docking and Scoring Studies of Carborane Ligands with Estrogen Receptor

  • Ok, Kiwon;Jung, Yong Woo;Jee, Jun-Goo;Byun, Youngjoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1051-1054
    • /
    • 2013
  • Closo-carborane has been considered as an efficient boron-carrier for boron neutron capture therapy (BNCT) and an attractive surrogate of lipophilic phenyl or cyclohexyl ring in drug design. Despite a great number of carborane-containing ligands have been synthesized and evaluated, molecular modeling studies of carborane ligands with macromolecules have been rarely reported. We herein describe a facile docking and scoring-function strategy of 16 carborane ligands with an estrogen receptor by using the commercial Gaussian, Chem3D Pro and Discovery Studio (DS) computational programs. Docked poses of the carborane ligands in silico exhibited similar binding modes to that of the crystal ligand in the active site of estrogen receptor. Score analysis of the best docked pose for each ligand indicated that the Ligscore1 and the Dockscore have a moderate correlation with in vitro biological activity. This is the first report on the scoring-correlation studies of carborane ligands with macromolecules. The integrated Gaussian-DS approach has a potential application for virtual screening, De novo design, and optimization of carborane ligands in medicinal chemistry.

Possibility of curium as a fuel for VVER-1200 reactor

  • Shelley, Afroza;Ovi, Mahmud Hasan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • In this research, curium oxide (CmO2) is studied as fuel for VVER-1200 reactor to get an attention to its energy value and possibilities. For this purpose, CmO2 is used in fuel rods or integrated burnable absorber (IBA) rods with and without UO2 and then compared with the conventional fuel assembly of VVER-1200 reactor. It is burned to 60 GWd/t by using SRAC-2006 code and JENDL-4.0 data library. From these studies, it is found that CmO2 is competent like UO2 as a fuel due to higher fission cross-section of 243Cm and 245Cm isotopes and neutron capture cross-section of 244Cm and 246Cm isotopes. As a result, when some or all of the UO2 of fuel rods or IBA rods are replaced by CmO2, we get a similar k-inf like the reference even with lower enrichment UO2 fuels. These studies show that the use of CmO2 as IBA rods is more effective than the fuel rods considering the initially loaded amount, power peaking factor (PPF), fuel temperature and void coefficient, and the quality of spent fuel. From a detailed study, 3% CmO2 with inert material ZrO2 in IBA rods are recommended for the VVER-1200 reactor assembly from the once through concept.

volution of massive stars in Case A binary systems and implications for supernova progenitors

  • Lee, Hunchul;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.70.4-71
    • /
    • 2020
  • One of the distinctive characteristics of the evolution of binary systems would be mass transfer. Close binary systems experience so-called Case A mass transfer during the main-sequence. We have performed calculations of the evolution of massive Case A (with the initial period 1.5 ~ 4.5 days) binary systems with the initial mass of 10 ~ 20 solar masses and mass ratio 0.5 ~ 0.95 using the MESA code. We find that in some systems, after the first mass transfer, the secondary stars evolve faster than the primary stars and undergo so-called 'reverse' mass transfer. Such phenomena tend to occur in relatively low-mass (initial mass < 16 solar masses) and close (initial period < 3 day) systems. Unless a system enters the common-envelope phase, the primary star would become a single helium star after the secondary star ends its life if the system were unbound by the neutron star kick. We find the various evolutionary implications of the remaining primary stars. In addition to the evolution into the compact single helium star progenitor, there is a possibility that the remaining primary star could evolve into a helium giant star, which could be a promising candidate for Type Ibn supernova progenitor, depending on the core mass. Further, we find that some primary stars satisfy the conditions for the formation of electron-capture supernova progenitor.

  • PDF

Recoil Effects of Neutron-Irradiated Metal Permanganates (중성자조사 금속 과망간산염의 반조효과)

  • Lee, Byung-Hun;Kim, Jung-Gwan
    • Nuclear Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.105-111
    • /
    • 1988
  • The chemical effects resulting from the capture of the thermal neutron by manganese in various crystalline permanganates, that is, potassium permanganate ammonium permangante and barium permanganate, have been investigated. The effect of pH of solvent on the distribution of radioactive manganese chemical species, that is, cationic $^{56}$ Mn, $^{56}$ MnO$_2$ and $^{56}$ MnO$_4$$^{[-10]}$ produced in the permanganates by $^{55}$ Mn(n, r) $^{56}$ Mn reaction was studied by using various adsorbents and ion-exchanger, that is, zeolite A-3, kaolinite, alumina, manganese dioxide and Dowex-50 The distribution of radioactive MnO$_4$$^{[-10]}$ in kaolinite and alumina has higher than that in other adsorbents and ion-exchanger at a representative pH value of 4, 7 and 9, respectively. The yield of radioactive MnO$_4$$^{[-10]}$ is higher at pH 4 End pH 9 than at pH 7. The thermal annealing behavior of recoil manganese atoms produced in the permanganates by $^{55}$ Mn(n, r) $^{56}$ Mn reaction was also studied. The retention of MnO$_4$$^{[-10]}$ in the thermal annealing is increased as annealing temperature increases when it was treated at 10$0^{\circ}C$ and 13$0^{\circ}C$. The recoil effect of permanganates was explained by the hot zone model.

  • PDF

OECD/NEA BENCHMARK FOR UNCERTAINTY ANALYSIS IN MODELING (UAM) FOR LWRS - SUMMARY AND DISCUSSION OF NEUTRONICS CASES (PHASE I)

  • Bratton, Ryan N.;Avramova, M.;Ivanov, K.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.313-342
    • /
    • 2014
  • A Nuclear Energy Agency (NEA), Organization for Economic Co-operation and Development (OECD) benchmark for Uncertainty Analysis in Modeling (UAM) is defined in order to facilitate the development and validation of available uncertainty analysis and sensitivity analysis methods for best-estimate Light water Reactor (LWR) design and safety calculations. The benchmark has been named the OECD/NEA UAM-LWR benchmark, and has been divided into three phases each of which focuses on a different portion of the uncertainty propagation in LWR multi-physics and multi-scale analysis. Several different reactor cases are modeled at various phases of a reactor calculation. This paper discusses Phase I, known as the "Neutronics Phase", which is devoted mostly to the propagation of nuclear data (cross-section) uncertainty throughout steady-state stand-alone neutronics core calculations. Three reactor systems (for which design, operation and measured data are available) are rigorously studied in this benchmark: Peach Bottom Unit 2 BWR, Three Mile Island Unit 1 PWR, and VVER-1000 Kozloduy-6/Kalinin-3. Additional measured data is analyzed such as the KRITZ LEU criticality experiments and the SNEAK-7A and 7B experiments of the Karlsruhe Fast Critical Facility. Analyzed results include the top five neutron-nuclide reactions, which contribute the most to the prediction uncertainty in keff, as well as the uncertainty in key parameters of neutronics analysis such as microscopic and macroscopic cross-sections, six-group decay constants, assembly discontinuity factors, and axial and radial core power distributions. Conclusions are drawn regarding where further studies should be done to reduce uncertainties in key nuclide reaction uncertainties (i.e.: $^{238}U$ radiative capture and inelastic scattering (n, n') as well as the average number of neutrons released per fission event of $^{239}Pu$).

Development Treatment Planning System Based on Monte-Carlo Simulation for Boron Neutron Capture Therapy

  • Kim, Moo-Sub;Kubo, Kazuki;Monzen, Hajime;Yoon, Do-Kun;Shin, Han-Back;Kim, Sunmi;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.232-235
    • /
    • 2016
  • The purpose of this study is to develop the treatment planning system (TPS) based on Monte-Carlo simulation for BNCT. In this paper, we will propose a method for dose estimation by Monte-Carlo simulation using the CT image, and will evaluate the accuracy of dose estimation of this TPS. The complicated geometry like a human body allows defining using the lattice function in MCNPX. The results of simulation such as flux or energy deposition averaged over a cell, can be obtained using the features of the tally provided by MCNPX. To assess the dose distribution and therapeutic effect, dose distribution was displayed on the CT image, and dose volume histogram (DVH) was employed in our developed system. The therapeutic effect can be efficiently evaluated by these evaluation tool. Our developed TPS could be effectively performed creating the voxel model from CT image, the estimation of each dose component, and evaluation of the BNCT plan.

LOCAL BURNUP CHARACTERISTICS OF PWR SPENT NUCLEAR FUELS DISCHARGED FROM YEONGGWANG-2 NUCLEAR POWER PLANT

  • Ha, Yeong-Keong;Kim, Jung-Suck;Jeon, Young-Shin;Han, Sun-Ho;Seo, Hang-Seok;Song, Kyu-Seok
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.79-88
    • /
    • 2010
  • Spent $UO_2$ nuclear fuel discharged from a nuclear power plant (NPP) contains fission products, U, Pu, and other actinides. Due to neutron capture by $^{238}U$ in the rim region and a temperature gradient between the center and the rim of a fuel pellet, a considerable increase in the concentration of fission products, Pu, and other actinides are expected in the pellet periphery of high burnup fuel. The characterization of the radial profiles of the various isotopic concentrations is our main concern. For an analysis, spent nuclear fuels originating from the Yeonggwang-2 pressurized water reactor (PWR) were chosen as the test specimens. In this work, the distributions of some actinide isotopes were measured from center to rim of the spent fuel specimens by a radiation shielded laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) system. Sampling was performed along the diameter of the specimen by reducing the sampling intervals from 500 ${\mu}m$ in the center to 100 ${\mu}m$ in the pellet periphery region. It was observed that the isotopic concentration ratios for minor actinides in the center of the specimen remain almost constant and increase near the pellet periphery due to the rim effect apart from the $^{236}U$ to $^{235}U$ ratio, which remains approximately constant. In addition, the distributions of local burnup were derived from the measured isotope ratios by applying the relationship between burnup and isotopic ratio for plutonium and minor actinides calculated by the ORIGEN2 code.

Decay Heat Evaluation of Spent Fuel Assemblies in SFP of Kori Unit-1

  • Kim, Kiyoung;Kim, Yongdeog;Chung, Sunghwan
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.11a
    • /
    • pp.104-104
    • /
    • 2018
  • Kori Unit 1 is the first permanent shutdown nuclear power plant in Korea and it is on June 18th, 2017. Spent fuel assemblies began to be discharged from the reactor core to the spent fuel pool(SFP) within one week after shutdown of Kori unit 1 and the campaign was completed on June 27th, 2017. The total number of spent nuclear fuel assemblies in SFP of Kori Unit-1 is 485 and their discharging date is different respectively. So, decay heat was evaluated considering the actual enrichment, operation history and cooling time of the spent fuel assemblies stored in SFP of the Kori Unit-1. The code used in the evaluation is the ORIGEN-based CAREPOOL system developed by KHNP. Decay heat calculation of PWR fuel is based on ANSI/ANS 5.1-2005, "Decay heat power in light water reactors" and ISO-10645, "Nuclear energy - Light water reactors - Calculation of the decay heat power in nuclear fuels. Also, we considered the contribution of fission products, actinide nuclides, neutron capture and radioactive material in decay heat calculation. CAREPOOL system calculates the individual and total decay heat of all of the spent fuel assemblies in SFP of Kori Unit-1. As a result, the total decay heat generated in SFP on June 28th, 2017 when the spent fuel assemblies were discharged from the reactor core, is estimated to be about 4,185.8 kw and to be about 609.5 kw on September 1st, 2018. It was also estimated that 119.6 kw is generated in 2050 when it is 32 years after the permanent shutdown. Figure 1 shows the trend of total decay heat in SFP of Kori Unit-1.

  • PDF