• Title/Summary/Keyword: Neutron Capture

Search Result 124, Processing Time 0.024 seconds

Dichotomy of the Galactic Halo as Revealed by Carbon-Enhanced Metal-Poor Giants

  • Jung, Jaehun;Lee, Young Sun;Kim, Young Kwang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.66.3-67
    • /
    • 2018
  • We present distinct chemical and kinematic properties associated with the inner and outer halos of the Milky Way, as identified by metal-poor stars from the Sloan Digital Sky Survey. In particular, using carbon-enhance metal-poor (CEMP) giants, we first map out the fractions of CEMP-no stars (without strongly enhanced neutron-capture elements) and CEMP-s stars (with a large enhancement of s-process elements) in the inner- and outer-halo populations, separated by their spatial distribution of carbonicity ([C/Fe]). The CEMP-no and CEMP-s objects are classified by their different levels of absolute carbon abundances, A(C). We investigate characteristics of rotational velocity and orbital eccentricity for these sub-classes within the halo populations. Distinct kinematic features and fractions between CEMP-no and CEMP-s stars identified in each halo region will provide important clues on the origin of the dichotomy of the Galactic halo.

  • PDF

Some Improvements of Gamma-ray Measurement for the Determination of the Boron Content (붕소 함량결정을 위한 즉발 감마선 계측법의 개선)

  • Nak Bae Kim;Hae-Ill Bak
    • Nuclear Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.18-20
    • /
    • 1984
  • The detection limit of boron has been lowered further in the capture gamma-ray measurement after preconcentration of boron by placing natural lithium brick in front of Ge(Li) detector. The experimental detection limit is found to be 0.30ppm, 0.18ppm, 0.045ppm and 0.090ppm for the samples of aluminum, steel, uranium dioxide and graphite, respectively. An alternate counting technique kas been also used for neglecting the error caused by the fluctuation of neutron flux during counting.

  • PDF

Hot Atom Chemistry of Aromatic Halides : Scavenger, Temperature and Oxygen Effect (芳香族할라이드의 Hot Atom Chemistry 스캐벤져, 溫度 및 酸素의 效果)

  • Choi, Jae-Ho;Park, Yong-Chan;Son, Mi-Ja
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.2
    • /
    • pp.78-80
    • /
    • 1965
  • The organic yields(i.e., fraction of nuclear events resulting in organic compound formation) of the radioactive neutron capture reactions of the halogens in purified aromatic halides have been determined in the liquid and solid state, in the presence of scavenger, elemental halogen for thermal atoms, and in the presence of oxygen. Among the important results are; (1) organic yields of the halides are due in part to hot processes and in part to thermal processes; (2) temperature (from liquid state to solid state); (3) the organic yield of chlorobenzene is the same in the solid phase as in the liquid phase whereas the yields of the bromo-and iodobenzene are higher in the solid.

  • PDF

Boronated Porphyrins and Chlorins as Potential Anticancer Drugs

  • Ol'shevskaya, Valentina A.;Zaytsev, Andrey V.;Savchenko, Arina N.;Shtil, Alexander A.;Cheong, Chan-Seong;Kalinin, Valery N.
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.11
    • /
    • pp.1910-1916
    • /
    • 2007
  • Analyzed are recent advances in design of novel boronared conjugates of synthetic and natural porphyrins and chlorins. These compounds showed high efficacy as cytotoxic agents for tumor cells in culture and as phototoxins in photodynamic therapy of tumor xenografts. Thus, boronated porphyrins and chlorins emerge as promising class of anticancer agents with potentially multiple advantages: the chemotherapeutic drugs alone and photo- and radiosensitizers in binary treatments.

Radioiodination strategies for carborane compounds

  • Rajkumar Subramani;Abhinav Bhise;Jeongsoo Yoo
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.8 no.1
    • /
    • pp.39-44
    • /
    • 2022
  • The development of methods for the inert and stable radiohalogenation of targeted radiopharmaceuticals is a prerequisite for real-time diagnosis and therapy using radiohalogenated radiopharmaceuticals. Radiohalogenated carboranes demonstrate superior stability in vivo and versatile applications compared with directly labeled tyrosine analogues or synthetically modified organic compounds. Herein, we focus on the most common approaches for the radioiodination (123l, 124l, 125l, and 131l) of carborane derivatives.

Construction of voxel head phantom and application to BNCT dose calculation (Voxel 머리팬텀 제작 및 붕소중성자포획요법 선량계산에의 응용)

  • Lee, Choon-Sik;Lee, Choon-Ik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.93-99
    • /
    • 2001
  • Voxel head phantom for overcoming the limitation of mathematical phantom in depleting anatomical details was constructed and example dose calculation for BNCT was performed. The repeated structure algorithm of the general purpose Monte Carlo code, MCNP4B was applied for yokel Monte Carlo calculation. Simple binary yokel phantom and combinatorial geometry phantom composed of two materials were constructed for validating the voxel Monte Carlo calculation system. The tomographic images of VHP man provided by NLM(National Library of Medicine) were segmented and indexed to construct yokel head phantom. Comparison of doses for broad parallel gamma and neutron beams in AP and PA directions showed decrease of brain dose due to the attenuation of neutron in eye balls in case of yokel head phantom. The spherical tumor volume with diameter, 5cm was defined in the center of brain for BNCT dose calculation in which accurate 3 dimensional dose calculation is essential. As a result of BNCT dose calculation for downward neutron beam of 10keV and 40keV, the tumor dose is about doubled when boron concentration ratio between the tumor to the normal tissue is $30{\mu}g/g$ to $3{\mu}g/g$. This study established the voxel Monte Carlo calculation system and suggested the feasibility of precise dose calculation in therapeutic radiology.

  • PDF

이성체쌍의 열중성자포획단면적비 측정

  • Park, Hy-Eil;Kim, Heon-Jun;Lee, Chul
    • Nuclear Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.340-344
    • /
    • 1972
  • Isomeric ratios were measured for the capture of thermal neutron by $^{79}$ Br, $^{80}$ Se, $^{103}$ Rh, $^{115}$ In and $^{133}$ Cs as well as those of epi-cadmium neutron by $^{79}$ Br, $^{80}$ Se and $^{l33}$Cs. The measurements were performed by analysing decay curves obtained by ${\gamma}$-ray spectrometry after irradiation. The counting efficiency curve was determined by using the calibrated standard sources with overall uncertainties of about 1%. Isomeric ratios, given in $\sigma$ high spin/($\sigma$ high spin + $\sigma$ low spin), of $^{80, 80m}$Br, $^{81,81m}$Se, $^{014, 104m}$Rh, $^{116,116m}$In and $^{134, 134m}$Cs produced by thermal neutron activation were found to be 0.21$\pm$0.01, 0.14$\pm$0.02, 0.12$\pm$0.02, 0.69$\pm$0.07 and 0.058$\pm$0.004, respectively, Those values of $^{80, 80m}$Br, $^{81,81m}$Se, and $^{134, 134m}$Cs Produced by epi-cadmium neutron were found to be 0.19$\pm$0.02, 0.29$\pm$0.02 and 0.074$\pm$0.011, respectively. The experimental values obtained were compared with the theoretical values deduced from the statistical model. There were the general agreements between the theory and the experiment.t.

  • PDF

Borehole Elemental Concentration Logs: Theory, Current Trends and Next Level (암석구성성분검층: 원리, 연구동향 및 향후 과제)

  • Shin, Jehyun;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.149-159
    • /
    • 2019
  • Borehole elemental concentration logging, measuring neutron-induced gamma rays by inelastic scattering and neutron capture interactions between neutron and formation, delivers concentrations of the most common elements found in the minerals and fluids of subsurface formation. X-ray diffraction and X-ray fluorescence analysis from core samples are traditionally used to understand formation composition and mineralogy, but it represents only part of formations. Additionally, it is difficult to obtain elemental analysis over the whole intervals because of poor core recovery zones such as fractures or sand layers mainly responsible for groundwater flow. The development of borehole technique for in situ elemental analysis plays a key role in assessing subsurface environment. Although this technology has advanced consistently starting from conventional and unconventional resources evaluation, it has been considered as exclusive techniques of some major service company. As regards domestic research and development, it has still remained an unexplored field because of some barriers such as the deficiency of detailed information on tools and calibration facility for chemistry and mineralogy database. This article reviews the basic theory of spectroscopy measurements, system configuration, calibration facility, and current status. In addition, this article introduces the domestic researches and self-development status on borehole elemental concentration tools.

Chemical Effects of Nuclear Transformations in Metal Salts (金屬鹽의 原子核變換의 化學的 效果)

  • Byung Hun Lee;Jong Du Lee
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.331-338
    • /
    • 1975
  • The distribution of $^{51}Cr\;and\;^{128}I$ recoil species following radiative-neutron capture in chromates, dichromates, iodates and periodates has been investigated by using paper-electrophoresis. In view of the effective recoil energy and the effect of the internal conversion, it is unlikely that an atom which has captured a neutron can remain bound in its original molecule. It is also unlikely that the energy of the recoil atom is dissipated in heating a small region of the crystal. However, the results of paper-electrophoresis separation of recoil $^{51}Cr\;and\;^{128}I$ indicated that many more of the recoil atoms were bound in the parent molecule. The disorder model for the reaction was proposed from observations of retention. In considering cations, the greater their radii, the higher is the probability of the recoil atom breaking through the secondary cage. In ammonium salt, the ammonium ion behaved as a reducing agent in the disorder zone and resulted in low retention. Crystal structures with their greater free space have shown low retention.

  • PDF

Measurements of Neutron Activation and Dose Rate Induced by High-Energy Medical Linear Accelerator

  • Kwon, Na Hye;Jang, Young Jae;Kim, Jinsung;Kim, Kum Bae;Yoo, Jaeryong;Ahn, So Hyun;Kim, Dong Wook;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.145-152
    • /
    • 2021
  • Purpose: During the treatments of cancer patients with a linear accelerator (LINAC) using photon beams with energies ≥8 MV, the components inside the LINAC head get activated through the interaction of photonuclear reaction (γ, n) and neutron capture (n, γ). We used spectroscopy and measured the dose rate for the LINAC in operation after the treatment ended. Methods: We performed spectroscopy and dose rate measurements for three units of LINACs with a portable high-purity Germanium (HPGe) detector and a survey meter. The spectra were obtained after the beams were turned off. Spectroscopy was conducted for 3,600 seconds, and the dose rate was measured three times. We identified the radionuclides for each LINAC. Results: According to gamma spectroscopy results, most of the nuclides were short-lived radionuclides with half-lives of 100 days, except for 60Co, 65Zn, and 181W nuclides. The dose rate for three LINACs obtained immediately in front of the crosshair was in the range of 0.113 to 0.129 µSv/h. The maximum and minimum dose rates measured on weekends were 0.097 µSv/h and 0.092 µSv/h, respectively. Compared with the differences in weekday data, there was no significant difference between the data measured on Saturday and Sunday. Conclusions: Most of the detected radionuclides had half-lives <100 days, and the dose rate decreased rapidly. For equipment that primarily used energies ≤10 MV, when the equipment was transferred after at least 10 minutes after shutting it down, it is expected that there will be little effect on the workers' exposure.