• 제목/요약/키워드: Neutrino

검색결과 36건 처리시간 0.022초

Constraints on dark radiation from cosmological probes

  • Rossi, Graziano;Yeche, Christophe;Palanque-Delabrouille, Nathalie;Lesgourgues, Julien
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.44.1-44.1
    • /
    • 2015
  • We present joint constraints on the number of effective neutrino species $N_{eff}$ and the sum of neutrino masses ${\Sigma}m_{\nu}$, based on a technique which exploits the full information contained in the one-dimensional Lyman-${\alpha}$ forest flux power spectrum, complemented by additional cosmological probes. In particular, we obtain $N_{eff}=2.91{\pm}0.22$ (95% CL) and ${\Sigma}m_{\nu}$ < 0.15 eV (95% CL) when we combine BOSS Lyman-${\alpha}$ forest data with CMB (Planck+ACT+SPT+WMAP polarization) measurements, and $N_{eff}=2.88{\pm}0.20$ (95% CL) and ${Sigma}m_{\nu}$ < 0.14 eV (95% CL) when we further add baryon acoustic oscillations. Our results tend to favor the normal hierarchy scenario for the masses of the active neutrino species, provide strong evidence for the Cosmic Neutrino Background from $N_{eff}{\approx}3$($N_{eff}=0$ is rejected at more than $14{\sigma}$), and rule out the possibility of a sterile neutrino thermalized with active neutrinos (i.e., $N_{eff}=4$) - or more generally any decoupled relativistic relic with $${\Delta}N_{eff}{\sim_=}1$$ - at a significance of over $5{\sigma}$, the strongest bound to date, implying that there is no need for exotic neutrino physics in the concordance ${\Lambda}CDM$ model.

  • PDF

COSMOLOGY WITH MASSIVE NEUTRINOS: CHALLENGES TO THE STANDARD ΛCDM PARADIGM

  • ROSSI, GRAZIANO
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.321-325
    • /
    • 2015
  • Determining the absolute neutrino mass scale and the neutrino mass hierarchy are central goals in particle physics, with important implications for the Standard Model. However, the final answer may come from cosmology, as laboratory experiments provide measurements for two of the squared mass differences and a stringent lower bound on the total neutrino mass - but the upper bound is still poorly constrained, even when considering forecasted results from future probes. Cosmological tracers are very sensitive to neutrino properties and their total mass, because massive neutrinos produce a specific redshift-and scale-dependent signature in the power spectrum of the matter and galaxy distributions. Stringent upper limits on ${\sum}m_v$ will be essential for understanding the neutrino sector, and will nicely complement particle physics results. To this end, we describe here a series of cosmological hydrodynamical simulations which include massive neutrinos, specifically designed to meet the requirements of the Baryon Acoustic Spectroscopic Survey (BOSS) and focused on the Lyman-${\alpha}$ ($Ly{\alpha}$) forest - also a useful theoretical ground for upcoming surveys such as SDSS-IV/eBOSS and DESI. We then briefly highlight the remarkable constraining power of the $Ly{\alpha}$ forest in terms of the total neutrino mass, when combined with other state-of-the-art cosmological probes, leaving to a stringent upper bound on ${\sum}m_v$.

The medium-band observation of the neutrino source, TXS 0506+056

  • Hwang, Sungyong;Im, Myungshin;Taak, Yoonchan;Paek, Insu;Choi, Changsu;Shin, Suhyun;Ji, Tae-Geun
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.73.4-73.4
    • /
    • 2019
  • The TXS0506+056 is a blazar and counterpart of the neutrino event IceCube-170922A. It is the first time that the neutrino event and flaring event in electromagnetic wave (EM) coincided. We observed TXS0506+056 with medium-bands in optical using 0.25m and 2.1m telescope at McDonald observatory about a month after the neutrino event. We tracked the variability of SED of the target for three weeks, and our observation showed no abrupt variability in optical range during this period. We concluded that a month after the neutrino event, the TXS0506+056 became less active and shows no feature of the energetic event. We also concluded that the medium-bands are well suited for tracking SEDs of objects. Our result demonstrates the potential of the wide-field 0.25m telescope (5.5 deg^2) for finding transient objects and track the variability of sources like AGNs.

  • PDF

Gamma-Ray and Neutrino Emissions from Starburst Galaxies

  • Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.37.1-37.1
    • /
    • 2020
  • Cosmic-ray protons (CRp) are efficiently produced at starburst galaxies (SBGs), where the star formation rate (SFR) rate is high. In this talk, we present estimates of gamma-ray and neutrino emissions from nearby SBGs, M82, NGC253, and Arp220. Inside the starburst nucleus (SBN), CRp are accelerated at supernova remnant (SNR) shocks as well as at stellar wind (SW) termination shocks, and their transport is governed by the advection due to starburst-driven wind and diffusion mediated by turbulence. We here model the momentum distributions of SNR and SW-produced CRp with single or a double power-law forms. We also employ two different diffusion models, where CRp are resonantly scattered off large-scale turbulence in SBN or self-excited waves driven by CR streaming instability. We then calculate gamma-ray/neutrino fluxes. The observed gamma-ray fluxes by Fermi-LAT, Veritas, and H.E.S.S are well reproduced with double power-law distribution for SNR-produced CRp and the CRp diffusion by self-excited turbulence. The estimated neutrino fluxes are <~10-3 of the atmospheric neutrino flux in the energy range of Eneutrino <~100 GeV and <~10-1 of the IceCube point source sensitivity in the energy range of Eneutrino >~60 TeV.

  • PDF

Detection of Antineutrinos for Reactor Monitoring

  • Kim, Yeongduk
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.285-292
    • /
    • 2016
  • Reactor neutrinos have been detected in the past 50 years by various detectors for different purposes. Beginning in the 1980s, neutrino physicists have tried to use neutrinos to monitor reactors and develop an optimized detector for nuclear safeguards. Recently, motivated by neutrino oscillation physics, the technology and scale of reactor neutrino detection have progressed considerably. In this review, I will give an overview of the detection technology for reactor neutrinos, and describe the issues related to further improvements in optimized detectors for reactor monitoring.

A simple method for estimating the major nuclide fractional fission rates within light water and advanced gas cooled reactors

  • Mills, R.W.;Slingsby, B.M.;Coleman, J.;Collins, R.;Holt, G.;Metelko, C.;Schnellbach, Y.
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2130-2137
    • /
    • 2020
  • The standard method for calculating anti-neutrino emissions from a reactor involves knowing the fractional fission rates for the most important fissioning nuclides in the reactor. To calculate these rates requires detailed reactor physics calculations based upon the reactor design, fuel design, burnup dependent fuel composition, location of specific fuel assemblies in the core and detailed operational data from the reactor. This has only been published for a few reactors during specific time periods, whereas to be of practical use for anti-neutrino reactor monitoring it is necessary to be able to predict these on the publicly available information from any reactor, especially if using these data to subtract the anti-neutrino signal from other reactors to identify an undeclared reactor and monitor its operation. This paper proposes a method to estimate the fission fractions for a specific reactor based upon publicly available information and provides a database based upon a series of spent fuel inventory calculations using the FISPIN10 code and its associated data libraries.

Study on the Output Current for Electrochemical Low-energy Neutrino Detector with Regards to Oxygen Concentration

  • Suda, Shoya;Ishibashi, Kenji;Riyana, Eka Sapta;Aida, Yani Nur;Nakamura, Shohei;Imahayashi, Yoichi
    • Journal of Radiation Protection and Research
    • /
    • 제41권4호
    • /
    • pp.373-377
    • /
    • 2016
  • Background: Experiments with small electrochemical apparatus were previously carried out for detecting low-energy neutrinos under irradiation of reactor neutrinos and under natural neutrino environment. The experimental result indicated that the output current of reactor-neutrino irradiated detector was appreciably larger than that of natural environmental one. Usual interaction cross-sections of neutrinos are quite small, so that they do not explain the experimental result at all. Materials and Methods: To understand the experimental data, we propose that some biological products may generate AV-type scalar field B0, leading to a large interaction cross-section. The output current generation is ascribed to an electrochemical process that may be assisted by weak interaction phenomena. Dissolved oxygen concentrations in the detector solution were measured in this study, for the purpose of understanding the mechanism of the detector output current generation. Results and Discussion: It was found that the time evolution of experimental output current was mostly reproduced in simulation calculation on the basis of the measured dissolved oxygen concentration. Conclusion: We mostly explained the variation of experimental data by using the electrochemical half-cell analysis model based on the DO concentration that is consistent to the experiment.

A Model for Diffusive Shock Acceleration of Protons in Intracluster Shocks and Gamma-ray and Neutrino Emissions from Clusters of Galaxies

  • Ha, Ji-Hoon;Ryu, Dongsu;Kang, Hyesung
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.54.3-54.3
    • /
    • 2019
  • During the formation of large-scale structures in the universe, shocks with the sonic Mach number Ms <~ 5 are naturally induced by supersonic flow motions of baryonic matter in the intracluster medium (ICM). Cosmic rays (CRs) are expected to be accelerated via diffusive shock acceleration (DSA) at these ICM shocks, although the existence of CR protons in the ICM remains to be confirmed through gamma-ray observations. Based on the results obtained from kinetic plasma simulations, we build an analytic DSA model for weak, quasi-parallel shocks in the test-particle regime. With our DSA model, the CR acceleration efficiency ranges ~ 0.001 - 0.02 in supercritical quasi-parallel shocks with sonic Mach number Ms ~ 2.25 - 5, and the acceleration would be negligible in subcritical shocks wth Ms <~ 2.25. Adopting our DSA model, we estimate gamma-ray and neutrino emissions from clusters of galaxies by performing cosmological hydrodynamic simulations. The estimated gamma-ray flux is below the Fermi-LAT upper limit. In addition, the possible neutrino emission due to the decay of charged pions in galaxy clusters would be about <~ 1% of the atmospheric neutrino intensity in the energy range of <~ 100 GeV. In this talk, we will discuss the implication of our results.

  • PDF

Supernovae Follow-up Observations and the Korean Neutrino Telescope

  • 김상철
    • 천문학회보
    • /
    • 제42권1호
    • /
    • pp.36.2-36.2
    • /
    • 2017
  • Massive stars (${\geq}8M_{\odot}$) are believed to experience core-collapse and finish their lives as supernova (SN) explosions. Astronomers operating the current SN survey facilities try to catch the first moments of SN explosions. Since neutrinos are emitted first from the SNe before the electromagnetic lights, any neutrino detections from more than two sites within around 10 seconds could be useful alert for early follow-up observations, especially for optical SN follow-up telescopes. In this talk, I will brief the current SN follow-up observation projects, what they want to find out and contribute to SN sciences. Focus will be on the early detection and early sciences on SNe, which is what the Korean Neutrino Telescope can contribute most importantly.

  • PDF

THREE-DIMENSIONAL SIMULATION OF A ROTATING CORE-COLLAPSE SUPERNOVA

  • NAKAMURA, KO;KURODA, TAKAMI;TAKIWAKI, TOMOYA;KOTAKE, KEI
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.481-483
    • /
    • 2015
  • Multi-dimensionality in the inner working of core-collapse supernovae has long been considered one of the most important ingredients to understand the explosion mechanism. We perform a series of numerical experiments to explore how rotation impacts the 3-dimensional hydrodynamics of core-collapse supernova. We employ a light-bulb scheme to trigger explosions and a three-species neutrino leakage scheme to treat deleptonization effects and neutrino losses from the neutron star interior. We find that the rotation can help the onset of neutrino-driven explosions for models in which the initial angular momentum is matched to that obtained from recent stellar evolutionary calculations (${\sim}0.3-3rad\;s^{-1}$ at the center). For models with larger initial angular momenta, a shock surface deforms to be oblate due to larger centrifugal force. This makes a gain region, in which matter gains energy from neutrinos, more concentrated around the equatorial plane. As a result, the preferred direction of the explosion in 3-dimensional rotating models is perpendicular to the spin axis, which is in sharp contrast to the polar explosions around the axis that are often obtained from 2-dimensional simulations.