• Title/Summary/Keyword: Neutralization reaction

Search Result 114, Processing Time 0.029 seconds

Nitrate Reduction by Fe(0)/iron Oxide Mineral Systems: A Comparative Study using Different Iron Oxides (영가철과 여러 가지 산화철 조합공정을 이용한 질산성질소 환원에 관한 연구)

  • Song, Hocheol;Jeon, Byong-Hun;Cho, Dong-Wan
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.63-69
    • /
    • 2014
  • This paper presents the feasibility of using different iron oxides (microscale hematite (HT), microscale magnetite (MT), and nanoscale maghemite (NMH)) in enhancing nitrate reduction by zero-valent iron (Fe(0)) under two solution conditions (artificial acidic water and real groundwater). Addition of MT and NMH into Fe(0) system resulted in enhancement of nitrate reduction compared to Fe(0) along reaction, especially in groundwater condition, while HT had little effect on nitrate reduction in both solutions. Field emission scanning electron microscopy (FESEM) analysis showed association of MT and NMH with Fe(0) surface, presumably due to magnetic attraction. The rate enhancement effect of the minerals is presumed to arise from its role as an electron mediator that facilitated electron transport from Fe(0) to nitrate. The greater enhancement of MT and NMH in groundwater was attributed to surface charge neutralization by calcium and magnesium ions in groundwater, which in turn facilitated adsorption of nitrate on Fe(0) surface.

Treatment of Ethylene Glycol in Polyester Weight Loss Wastewater(I) - Reaction Characteristics - (Polyester감량폐수 중에 존재하는 Ethylene Glycol의 처리(I) - 반응 특성 -)

  • Kim, Jeong-Mog;Huh, Man-Woo;Han, Myung-Ho
    • Textile Coloration and Finishing
    • /
    • v.8 no.5
    • /
    • pp.84-89
    • /
    • 1996
  • This study carried out batch and continuous experiments using calcium hydroxide as neutralization agent and immobilization media for removing the ethylene glycol in the pretreated polyester weight loss wastewater. The $TCOD_{Mn}$ concentration in the treated wastewater using culture of iramobilization and suspension for the synthetic wastewater were found as 650mg/l and 1,250mg/l after 48hours, respectively. SVI(Sludge Volume Index) and $TCOD_{Mn}$ concentration were 74 and 73mg/l at optimum F/M ratio, 1.32kg-TCO $D_{Mn}$ /day. kg-MLVSS. The $TCOD_{Mn}$ concentration and removal efficiency were 213mg/l and 93.5% by continuous experiments in the air-lift bioreactor, respectively. The $TCOD_{Mn}$ concentration was 82mg/l, and also the MLVSS concentration was 2,550mg/l, when the volumetric loading rate was 3.04kg-$TCOD_{Mn}/m^{2}$ day for real polyester weight loss wastewater.

  • PDF

Role of antioxidants in fertility preservation of sperm - A narrative review

  • Ahmad Yar Qamar;Muhammad Ilyas Naveed;Sanan Raza;Xun Fang;Pantu Kumar Roy;Seonggyu Bang;Bereket Molla Tanga;Islam M. Saadeldin;Sanghoon Lee;Jongki Cho
    • Animal Bioscience
    • /
    • v.36 no.3
    • /
    • pp.385-403
    • /
    • 2023
  • Male fertility is affected by multiple endogenous stressors, including reactive oxygen species (ROS), which greatly deteriorate the fertility. However, physiological levels of ROS are required by sperm for the proper accomplishment of different cellular functions including proliferation, maturation, capacitation, acrosomal reaction, and fertilization. Excessive ROS production creates an imbalance between ROS production and neutralization resulting in oxidative stress (OS). OS causes male infertility by impairing sperm functions including reduced motility, deoxyribonucleic acid damage, morphological defects, and enhanced apoptosis. Several in-vivo and in-vitro studies have reported improvement in quality-related parameters of sperm following the use of different natural and synthetic antioxidants. In this review, we focus on the causes of OS, ROS production sources, mechanisms responsible for sperm damage, and the role of antioxidants in preserving sperm fertility.

Development of a Rapid Diagnostic Test Kit to Detect IgG/IgM Antibody against Zika Virus Using Monoclonal Antibodies to the Envelope and Non-structural Protein 1 of the Virus

  • Kim, Yeong Hoon;Lee, Jihoo;Kim, Young-Eun;Chong, Chom-Kyu;Pinchemel, Yanaihara;Reisdorfer, Francis;Coelho, Joyce Brito;Dias, Ronaldo Ferreira;Bae, Pan Kee;Gusmao, Zuinara Pereira Maia;Ahn, Hye-Jin;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.1
    • /
    • pp.61-70
    • /
    • 2018
  • We developed a Rapid Diagnostic Test (RDT) kit for detecting IgG/IgM antibodies against Zika virus (ZIKV) using monoclonal antibodies to the envelope (E) and non-structural protein 1 (NS1) of ZIKV. These proteins were produced using baculovirus expression vector with Sf9 cells. Monoclonal antibodies J2G7 to NS1 and J5E1 to E protein were selected and conjugated with colloidal gold to produce the Zika IgG/IgM RDT kit (Zika RDT). Comparisons with ELISA, plaque reduction neutralization test (PRNT), and PCR were done to investigate the analytical sensitivity of Zika RDT, which resulted in 100% identical results. Sensitivity and specificity of Zika RDT in a field test was determined using positive and negative samples from Brazil and Korea. The diagnostic accuracy of Zika RDT was fairly high; sensitivity and specificity for IgG was 99.0 and 99.3%, respectively, while for IgM it was 96.7 and 98.7%, respectively. Cross reaction with dengue virus was evaluated using anti-Dengue Mixed Titer Performance Panel (PVD201), in which the Zika RDT showed cross-reactions with DENV in 16.7% and 5.6% in IgG and IgM, respectively. Cross reactions were not observed with West Nile, yellow fever, and hepatitis C virus infected sera. Zika RDT kit is very simple to use, rapid to assay, and very sensitive, and highly specific. Therefore, it would serve as a choice of method for point-of-care diagnosis and large scale surveys of ZIKV infection under clinical or field conditions worldwide in endemic areas.

Synthesis of New Draw Solute Based on Polyethyleneimine for Forward Osmosis (정삼투를 위한 Polyethyleneimine 기반 유도용질 제조)

  • Lee, Hye-Jin;Choi, Jin-Il;Kwon, Sei;Kim, In-Chul
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.286-295
    • /
    • 2018
  • A novel multi-valent salt based on polyethyleneimine having molecular weight of 800 (PEI 800) has been synthesized and characterized as forward osmosis draws solute. A reaction intermediate was synthesized by the neutralization reaction of polyethyleneimine and methyl acrylate, and was hydrolyzed with potassium hydroxide to synthesize a water soluble carboxylic acid (potassium salt) polyethyleneimine. NMR spectrometry, viscometry measurements and osmometry measurements was performed to characterize the draw solute. Forward osmosis experiments were done to know whether the solute could be used as a draw solute or not. The result shows comparable water flux and lower reverse salt flux compared with NaCl as a draw solute. We have also demonstrated recycling of the draw solute in the FO-NF integrated process.

Low Temperature Pyrolysis for the Recovery of Value-added Resources from Waste Wire (II) (폐전선으로부터 유가자원 회수를 위한 저온열분해(II))

  • Han, Seong-Kuk;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.5
    • /
    • pp.553-556
    • /
    • 2009
  • This research aims at the recovery of valuable resource and more efficient waste treatment through solving the problem of pyrolysis technique. At first, in order to raise the economical efficiency, the low temperature pyrolysis experiment was carried out at the temperature of $450^{\circ}C$, which is lower than the common pyrolysis temperature area ($500{\sim}1000^{\circ}C$). We could lower the reaction temperature and reduce the reaction time by using catalyst. Also we used indirect heat for the purpose of maintaining favorable anoxic condition. As a result, we could raise the recovery rate of the valuable copper and synthetic fuel oil. Furthermore, the by-products and flue gas could be treated more effectively as well. The flue gas passed through two stage neutralization tank, so that dioxin hardly occurs and other environment items are controlled fairly well to the environmental standard. Throughout this study, we produced the low temperature pyrolysis equipment (GTPK-001) as mentioned above, and we found out that the technique can be commercialized economically as well as environmentally friendly.

Study on Isolative Determination Methylephedrine Hydrochloride and Ephedrine Hydrochloride in the Mixed Preparation (혼합제제중 Methylephedrine Hydrochloride와 Ephedrine Hydrochloride의 분리정량에 관한 연구)

  • Ko, In-Suk
    • Korean Journal of Pharmacognosy
    • /
    • v.1 no.3
    • /
    • pp.93-99
    • /
    • 1970
  • There have been reported by several workers for the isolation and determination of the amine derivatives as Metbylephedrine Hydrochloride and Ephedrine Hydrochloride adopting neutralization method, steam distillation method, non-aqous titration method, ion-exchange resin method, titration method after acetylation, colorimetric method, gravimetric method, iodine titration method and gas chromatography. Those methods mentioned in above, can be practically applied for the sample which is not mixed one mith the other amine compounds. Presently, it has not shown on the isolative determination of the mixed sample of amine derivatives. In this paper, it is discussed on the isolative determination of Methylephedrine Hydrochloride as the tertiary amine compound and Ephedrine Hydrochloride as the secondary amine compound. According to the results of the experiment, it could be summarized as follows: 1. There is no time-variation on the color reaction of Methylephedrine Hydrochloride and Ephedrine Hydrochloride with the color reagent, bromcresolgreen. And Methylephedrine Hydrochloride and Ephedrine Hydrochloride, respectively, can be determined spectrophotometrically by means oft his color reaction. 2. For the isolation of Methylephedrine Hydrochloride and Ephedrine Hydrochloride from the mixed sample, Methylephedrine Hydrochloride can be eluted by chloroform, while Ephedrine Hydrochloride by the mixed solvent of chloroform and ethylalcohol (2:1), from the celite column adsorbed at pH6.4 followed by extraction with ether undersodium hydroxide alkali re action. 3. When the sample is mixed with quinine hydrochloride, dihydrocodeine bitartate, and noscapine, these mixed compounds can be eliminated by means of stram distillation. 4. When the sample is mixed with chlorpheniramine maleate, dextromethorphan hydrobromide and diphenhydramine hydrochloride, the mixed compounds can be eliminated by means of steam distillation and celite adsorption column chromatography, In conclusion, the isolative determination method for Methylephedrine Hydrochloride and Ephedrine Hydrochloride studied in this paper, indicates with the excellent reproducibility and accuracy.

  • PDF

Preparation and Physical Properties of Aqueous Polyurethane Based on Mono Methyl Ether for Skin Layer Coating (Skin layer 코팅에 사용되는 Mono Methyl Ether 기반 수성 폴리우레탄의 제조 및 물리적 성질)

  • Lee, Joo-Youb
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.524-530
    • /
    • 2019
  • In this study, polyether polyol polypropylene glycol and isophorone diisocyanate (IPDI) were synthesized based on polyrupopylene mono methyl eher (PM) for the synthesis of water - soluble polyurethane for coating on leather skin layer. After synthesis of prepolymer, PM was added at $40^{\circ}C$ to 1M, 2M, 3M, and 4M to inhibit the viscosity rise, and neutralization reaction and chain extension reaction were carried out to prepare polyurethane samples. According to the measurement results of the tensile strength, elongation and adhesive strength of the prepared sample, the tensile strength was 2.109 kgf / mm2 for PM 1M, 1.721kgf / mm2 for 4M, elongation was 496% for PM 1M, 522% for 4M, adhesion was 1.114 kgf / cm for PM 1M and 0.99 kgf / cm for 4M.

Durability and Crack Control of Concrete Using Fluosilicates Based Composite (규불화염계 복합 조성물을 혼입한 콘크리트의 균열제어 및 내구성)

  • Yun, Hyun-Do;Yang, Il-Seung;Kim, Do-Su;Khil, Bae-Su;Han, Seung-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.57-64
    • /
    • 2006
  • The crack presented in concrete structures causes a structural defect, the durability decrease, and external damages etc. Therefore, it is necessary to improve durability through the effort to control the crack. Fluosilicic acid($H_2SiF_6$) is recovered as aqueous solution which absorbs $SiF_4$ produced from the manufacturing of industrial-graded $H_3PO_4$ or HF. Generally, fluosilicates prepared by the reaction between $H_2SiF_6$ and metal salts. Addition of fluosilicates to cement endows odd properties through unique chemical reaction with the fresh and hardened cement. Mix proportions for experiment were modulated at 0.45 of water to cement ratio and $0.0{\sim}2.0%$ of adding ratio of fluosilicate salt based inorganic compound. To evaluate correlation of concrete strength and adding ratio of fluosilicate salt based inorganic compound, the tests were performed about design strength(21, 24, 27 MPa) with 0.5% of adding ratio of fluosilicate salt based inorganic compound. Applications of fluosilicate salt based inorganic compound to reduce cracks resulted from plastic and drying shrinkage, to improve durability are presented in this paper. Durability was evaluated as neutralization, chloride ion penetration depth, freezing thawing resistant tests and weight loss according reinforcement corrosion. It is ascertained that the concrete added fluosilicate salt based inorganic compound showed m ability to reduce the total area and maximum crack width significantly as compared non-added concrete. In addition, the durability of concrete improved because of resistance to crack and watertightness by packing role of fluosilicate salt based inorganic compound obtained and pozzolanic reaction of soluble $SiO_2$ than non-added concrete.

The pH Reduction of the Recycled Aggregate Originated from the Waste Concrete by the scCO2 Treatment (초임계 이산화탄소를 이용한 폐콘크리트 순환골재의 중성화)

  • Chung, Chul-woo;Lee, Minhee;Kim, Seon-ok;Kim, Jihyun
    • Economic and Environmental Geology
    • /
    • v.50 no.4
    • /
    • pp.257-266
    • /
    • 2017
  • Batch experiments were performed to develop the method for the pH reduction of recycled aggregate by using $scCO_2$ (supercritical $CO_2$), maintaining the pH of extraction water below 9.8. Three different aggregate types from a domestic company were used for the $scCO_2$-water-recycled aggregate reaction to investigate the low pH maintenance of aggregate during the reaction. Thirty five gram of recycled aggregate sample was mixed with 70 mL of distilled water in a Teflon beaker, which was fixed in a high pressurized stainless steel cell (150 mL of capacity). The inside of the cell was pressurized to 100 bar and each cell was located in an oven at $50^{\circ}C$ for 50 days and the pH and ion concentrations of water in the cell were measured at a different reaction time interval. The XRD and SEM-EDS analyses for the aggregate before and after the reaction were performed to identify the mineralogical change during the reaction. The extraction experiment for the aggregate was also conducted to investigate the pH change of extracted water by the $scCO_2$ treatment. The pH of the recycled aggregate without the $scCO_2$ treatment maintained over 12, but its pH dramatically decreased to below 7 after 1 hour reaction and maintained below 8 for 50 day reaction. Concentration of $Ca^{2+}$, $Si^{4+}$, $Mg^{2+}$ and $Na^+$ increased in water due to the $scCO_2$-water-recycled aggregate reaction and lots of secondary precipitates such as calcite, amorphous silicate, and hydroxide minerals were found by XRD and SEM-EDS analyses. The pH of extracted water from the recycled aggregates without the $scCO_2$ treatment maintained over 12, but the pH of extracted water with the $scCO_2$ treatment kept below 9 of pH for both of 50 day and 1 day treatment, suggesting that the recycled aggregate with the $scCO_2$ treatment can be reused in real construction sites.