• Title/Summary/Keyword: Neutral Point Voltage Control

Search Result 113, Processing Time 0.019 seconds

Simple Neutral Point Potential Control with Wide Modulation Indices Using Unified Voltage Modulation for Three-Level Diode-Clamped Inverter (3레벨 NPC 인버터의 전원전압변조 방식을 이용한 넓은 변조 지수에서 제어 가능한 간단한 중성점 제어 기법)

  • Moon, Seok-Hwan;Park, Byoung-Gun;Kim, Ji-won;Kim, Jong-Mu;Lee, Ki-chang;Ha, Hyung-Uk;Lee, Jung-Uk;Park, Byeong-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.221-222
    • /
    • 2014
  • 본 논문에서는 3레벨 NPC 인버터의 전원전압변조 방식을 이용하여 넓은 변조 지수에서 제어 가능한 간단한 중성점 제어 방법을 제안하였다. 제안한 제어 방법은 전원 전압 변조방법을 이용한 중성점 균형 계수와 정확한 옵셋 전압의 제한치를 이용하여 계산된다. 중성점 균형 계수는 전류의 극성과 상하 커패시터의 전압에 의해서 정의되어 진다. 제안된 제어 방법은 중성점 제어를 위해 공간전압 PWM과 불연속 PWM까지 동작범위를 확장하여 동작되어 진다. 제안된 방법은 넓은 변조지수에서 전원전압변조를 이용하여 공간전압 PWM방법을 쉽게 구현할 수 있다. 제안된 중성점 제어 방법의 타당성은 시뮬레이션을 통하여 검증하였다.

  • PDF

Sensorless Detection of Position and Speed in Brushless DC Motors using the Derivative of Terminal Phase Voltages Technique with a Simple and Versatile Motor Driver Implementation

  • Carlos Gamazo Real, Jose;Jaime Gomez, Gil
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1540-1551
    • /
    • 2015
  • The detection of position and speed in BLDC motors without using position sensors has meant many efforts for the last decades. The aim of this paper is to develop a sensorless technique for detecting the position and speed of BLDC motors, and to overcome the drawbacks of position sensor-based methods by improving the performance of traditional approaches oriented to motor phase voltage sensing. The position and speed information is obtained by computing the derivative of the terminal phase voltages regarding to a virtual neutral point. For starting-up the motor and implementing the algorithms of the detection technique, a FPGA board with a real-time processor is used. Also, a versatile hardware has been developed for driving BLDC motors through pulse width modulation (PWM) signals. Delta and wye winding motors have been considered for evaluating the performance of the designed hardware and software, and tests with and without load are performed. Experimental results for validating the detection technique were attained in the range 5-1500 rpm and 5-150 rpm under no-load and full-load conditions, respectively. Specifically, speed and position square errors lower than 3 rpm and between 10º-30º were obtained without load. In addition, the speed and position errors after full-load tests were around 1 rpm and between 10º-15º, respectively. These results provide the evidence that the developed technique allows to detect the position and speed of BLDC motors with low accuracy errors at starting-up and over a wide speed range, and reduce the influence of noise in position sensing, which suggest that it can be satisfactorily used as a reliable alternative to position sensors in precision applications.

Controlling the Properties of Graphene using CVD Method: Pristine and N-doped Graphene (화학기상증착법을 이용한 그래핀의 물성 조절: 그래핀과 질소-도핑된 그래핀)

  • Park, Sang Jun;Lee, Imbok;Bae, Dong Jae;Nam, Jungtae;Park, Byung Jun;Han, Young Hee;Kim, Keun Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.169-174
    • /
    • 2015
  • In this research, pristine graphene was synthesized using methane ($CH_4$) gas, and N-doped graphene was synthesized using pyridine ($C_5H_5N$) liquid source by chemical vapor deposition (CVD) method. Basic optical properties of both pristine and N-doped graphene were investigated by Raman spectroscopy and XPS (X-ray photoemission spectroscopy), and electrical transport characteristics were estimated by current-voltage response of graphene channel as a function of gate voltages. Results for CVD grown pristine graphene from methane gas show that G-peak, 2D-peak and C1s-peak in Raman spectra and XPS. Charge neutral point (CNP; Dirac-point) appeared at about +4 V gate bias in electrical characterization. In the case of pyridine based CVD grown N-doped graphene, D-peak, G-peak, weak 2D-peak were observed in Raman spectra and C1s-peak and slight N1s-peak in XPS. CNP appeared at -96 V gate bias in electrical characterization. These result show successful control of the property of graphene artificially synthesized by CVD method.