• Title/Summary/Keyword: Neurotoxin

Search Result 116, Processing Time 0.023 seconds

Intramuscular neural distribution of the teres minor muscle using Sihler's stain: application to botulinum neurotoxin injection

  • Kyu-Ho Yi;Soo-Bin Kim;Kangwoo Lee;Hyewon Hu;Ji-Hyun Lee;Hyung-Jin Lee
    • Anatomy and Cell Biology
    • /
    • v.56 no.3
    • /
    • pp.322-327
    • /
    • 2023
  • The aim of this study was to elucidate the intramuscular arborization of the teres minor muslce for effective botulinum neurotoxin injection. Twelve specimens from 6 adult Korean cadavers (3 males and 3 females, age ranging from 66 to 78 years) were used in the study. The reference line between the 2/3 point of the axillary border of the scapula (0/5), where the muscle originates ant the insertion point of the greater tubercle of the humerus (5/5). The most intramuscular neural distribution was located on 1/5-3/5 of the muscle. The tendinous portion was observed in the 3/5-5/5. The result suggests the botulinum neurotoxin should be delivered in the 1/5-3/5 area of the teres minor muscle.

Stimulation of Tissue Transglutaminase Activity by Clostridium botulinum Neurotoxin Type B

  • Moon, Yu-Seok;Gi-Hyeok;Rhee, Sang-Dal;Jung, Hyun-Ho
    • Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.161-164
    • /
    • 2003
  • Recombinant light chain of Clostridium botulinum neurotoxin type B stimulated transglutaminase activity in a dose dependent manner, Compared to native toxin, recombinant light chain showed av greater stimulatory effect on transglutaminase activity. Zn-chelating agents, inhibiting the proteolytic activity of the clostridial toxins, did not interfere with this stimulation. These results suggest that the light chain plays a major stimulatory role, which is not due to its metallopeptidase activity, but is possibly due to specific interaction with transglutaminase. More importantly, this report provides a new insight into the intracellular action of C. botulinum neurotoxins.

Determination of Neurotoxin Gene Expression in Clostridium botulinum Type A by Quantitative RT-PCR

  • Shin, Na-Ri;Shin, Ji-Hun;Chun, Jeong Hoon;Yoon, So-Yeon;Kim, Bong Su;Oh, Hee-Bok;Rhie, Gi-eun
    • Molecules and Cells
    • /
    • v.22 no.3
    • /
    • pp.336-342
    • /
    • 2006
  • Real time reverse transcription (RT)-PCR was used to quantify the expression of the botulinum neurotoxin type A (BoNT/A) gene (cntA) by normalization with the expression of 16S rRNA. The method were confirmed by monitoring the mRNA levels of cntA during growth in five type A strains. In all but one of the strains the expression of cntA mRNA was maximal in the late exponential phase, and approximately 35-fold greater than in the early exponential phase. The concentration of the extracellular BoNT/A complex detected by ELISA was highest in stationary phase. Sodium nitrite and sorbic acid completely inhibited growth at 20 ppm and $4mg\;ml^{-1}$, respectively. CntA expression became lower in proportion to the concentration of sorbic acid, and this reduction was confirmed by mouse bioassay. Our results show that real time RT-PCR can be used to quantify levels of C. botulinum type A neurotoxin transcripts and to assess the effects of food additives on botulinal risk.

Nanogap-Based Electrochemical Detection of Protein, Virus, and Bacteria

  • Park, Dae Keun;Kim, Soohyun;Yun, Kum-Hee;Pyo, Hanna;Kang, Aeyeon;Kim, Daehee;Lee, Cho Yeon;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.353.2-353.2
    • /
    • 2016
  • We studied electrochemical detection of Botulinum neurotoxin, Vaccinia virus, and Streptococcus Pneumoniae based on nanogap device. Target bio substances were employed as representative targets of protein, virus, and bacteria, respectively. Redox current generated by ferri/ferrocyanide as an electroactive probe was enhanced according to gap distance which was controlled by surface-catalyzed chemical deposition. We found that enhanced electrochemical signal leads more sensitive signal changes according to selective interaction of target and its complementary elements on the electrode or gap area. In case of Botulinum neurotoxin, the redox signal showed a time-dependent increase due to cleavage of the immobilized peptide which blocked redox cycling. Redox cycling was also hindered by Vaccinia virus and Streptococcus Pneumoniae which were selectively immobilized in the gap area.

  • PDF

Eosinophil-derived neurotoxin: a novel biomarker for diagnosis and monitoring of asthma

  • Kim, Chang-Keun
    • Clinical and Experimental Pediatrics
    • /
    • v.56 no.1
    • /
    • pp.8-12
    • /
    • 2013
  • Asthma is associated with increased levels of eosinophils in tissues, body fluids, and bone marrow. Elevated levels of eosinophil-derived neurotoxin (EDN) and eosinophil cationic protein (ECP) have been noted in asthma patients. Higher levels of EDN and ECP are also associated with exacerbated asthmatic conditions. Thus, EDN, along with ECP, may aid the diagnosis and monitoring of asthma. Several groups have suggested that EDN is more useful than ECP in evaluating disease severity. This may partially be because of the recoverability of EDN (not sticky, 100% recovery rate), as ECP is a sticky and more highly charged protein. In terms of clinical utility, EDN level is a more accurate biomarker than ECP when analyzing the underlying pathophysiology of asthma. As a monitoring tool, EDN has shown good results in children with asthma as well as other allergic diseases. In children too young to fully participate in lung function tests, EDN levels may be useful as an alter native measurement of eosinophilic inflammation. EDN can also be used in adult patients and in multiple specimen types (e.g., serum, sputum, bronchoalveolar lavage fluid, and nasal lavage fluid). These results are repeatable and reproducible. In conclusion, EDN may be a novel biomarker for the diagnosis, treatment, and monitoring of asthma/allergic disease.

Effects of Minor Arginyl tRNA and Isoleucyl tRNA on the Expression of Clostridium botulinum Neurotoxin Light Chain in Escherichia coli

  • Kim, Jin-Sook;Seong, Hye-Young;Kim, Mi-Wha;Ku, Jong-Seo;Choi, Soon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.287-291
    • /
    • 2003
  • Botulinum neurotoxin type A (BONT/A) is an extremely potent toxin, which is produced by Clostridium botulinum. The light chain of this protein (BONT/A LC), which is known as a zinc endopeptidase, cleaves SNAP-25 involved in the exocytosis process. In this work, the expression of recombinant BoNT/A LC in E. coli is described. The BONT/A LC gene of C. botulinum contains a high frequency of the arginine AGA and isoleucine ATA codons that are rarely used in genes of E. coli, hampering the translation of recombinant protein. The argD and ilex tRNA genes were cloned into pACYC184 vector, resulting in pAAD131X plasmid. The translational stress of the toxin gene related to codon bias was reversed by fupplernentation of the AGA arginyl tRNA of T4 phage and AUA isoleucyl tRNA of E. coli. This system may be applicable for the expression of a variety of AT-rich heterologous genes in E. coli.

Botulinum neurotoxin injection for treating plunged nose and post-rhinoplasty: anatomical perspectives of depressor septi nasi, nasalis, leveator labii superioris alaeque nasi muscle

  • Kyu-Ho Yi;Ji-Hyun Lee;Seon-Oh Kim;Hyewon Hu;Hyung-Jin Lee;You-Jin Choi;Tae-Hwan Ahn;Hee-Jin Kim
    • Anatomy and Cell Biology
    • /
    • v.56 no.4
    • /
    • pp.409-414
    • /
    • 2023
  • Botulinum neurotoxin (BoNT) injection for the treating plunged nose, post-rhinopasty and hyaluronic filler migration is common procedures in clinical settings. However, the lack of thorough anatomical understanding makes it difficult to locate the nose region muscles. The anatomical considerations concerned with BoNT injection into the nasalis, levator labii superioris alaeque, and depressor septi nasi muscles were reviewed in this study. The injection spots have been presented for the nasalis, levator labii superioris alaeque, and depressor septi nasi muscles, with the recommended injection technique for each muscle. We have suggested the ideal injection sites in association with outer anatomical landmarks of the nose region. Moreover, these proposals would support a more accurate procedure of BoNT injection in relieving plunged nose, preventing post-rhinoplasty deviation, and migration of the hyaluronic acid filler.

Production and Characterization of a Recombinant Antibody Neutralizing Botulinum Neurotoxin A (보툴리눔 신경독소 A를 중화하는 재조합 항체의 제조와 특성 분석)

  • Park, Hong-Gyu;Choi, Mieyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.295-301
    • /
    • 2017
  • Botulinum neurotoxin (BoNT/A) is a neurotoxin that selectively attacks the peripheral cholinergic nerve endings. It is produced by Gram -positive, endospore-forming strict anaerobic bacteria, Clostridium botulinum. Since BoNT/A could be a biothreat agent, as well as a contaminator of food and water supplies, the development of sensitive assays for toxin detection and potent antitoxin for the treatment of intoxication is necessary. In this study, for the purpose of producing monoclonal antibodies (mAbs) that are capable of neutralizing Botulinum neurotoxin type A (BoNT/A), scFv (single-chain variable domain fragment) libraries from the rabbit antisera against BoNT/A was fused to a human IgG. The resulting recombinant scFvIgG antibody protein was expressed in stable cell lines and was purified using a protein A affinity chromatography. The efficacy of scFvIgG mAb was confirmed by ELISA and was evaluated for the neutralization of BoNT/A in vivo. Such an in vivo toxin neutralization assay was performed using mice. Although scFvIgG antibody proteins (10 ug) failed to fully protect the mice challenged with BoNT/A (100,000 $LD_{50}$), it significantly prolonged the survival time. These results suggest that scFvIgG mAb may be capable of neutralizing BoNT/A single-chain variable domain fragment.