• 제목/요약/키워드: Neuroscience mining (NSM)

검색결과 2건 처리시간 0.016초

Applying a Novel Neuroscience Mining (NSM) Method to fNIRS Dataset for Predicting the Business Problem Solving Creativity: Emphasis on Combining CNN, BiLSTM, and Attention Network

  • Kim, Kyu Sung;Kim, Min Gyeong;Lee, Kun Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권8호
    • /
    • pp.1-7
    • /
    • 2022
  • 인공지능 기술이 발달하면서 뉴로사이언스 마이닝(NSM: NeuroScience Mining)과 AI를 접목하려는 시도가 증가하고 있다. 나아가 NSM은 뉴로사이언스와 비즈니스 애널리틱스의 결합으로 인해 연구범위가 확장되고 있다. 본 연구에서는 fNIRS 실험을 통해 확보한 뉴로 데이터를 분석하여 비즈니스 문제 해결 창의성(BPSC: business problem-solving creativity)을 예측하고 이를 통해 NSM의 잠재력을 조사한다. BPSC는 비즈니스에서 차별성을 가지게 하는 중요한 요소이지만, 인지적 자원의 하나인 BPSC의 측정 및 예측에는 한계가 존재한다. 본 논문에서는 BPSC 예측 성능을 높이는 방안으로 CNN, BiLSTM 그리고 어텐션 네트워크를 결합한 새로운 NSM 기법을 제안한다. 제안된 NSM 기법을 15만 개 이상의 fNIRS 데이터를 활용하여 유효성을 입증하였다. 연구 결과, 본 논문에서 제안하는 NSM 방법이 벤치마킹한 알고리즘(CNN, BiLSTM)에 비하여 우수한 성능을 가지는 것으로 나타났다.

딥러닝 기반 뉴로사이언스 마이닝 기법을 이용한 고객 매력/유용성 인지 (CAUP) 예측 성능에 관한 탐색적 연구: Dark vs Light 사용자 인터페이스 (UI)를 중심으로 (Exploring the Performance of Deep Learning-Driven Neuroscience Mining in Predicting CAUP (Consumer's Attractiveness/Usefulness Perception): Emphasis on Dark vs Light UI Modes)

  • 김민경;;이건창
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.19-22
    • /
    • 2022
  • In this work, we studied consumers' attractiveness/usefulness perceptions (CAUP) of online commerce product photos when exposed to alternative dark/light user interface (UI) modes. We analyzed time-series EEG data from 31 individuals and performed neuroscience mining (NSM) to ascertain (a) how the CAUP of products differs among UI modes; and (b) which deep learning model provides the most accurate assessment of such neuroscience mining (NSM) business difficulties. The dark UI style increased the CAUP of the products displayed and was predicted with the greatest accuracy using a unique EEG power spectra separated wave brainwave 2D-ConvLSTM model. Then, using relative importance analysis, we used this model to determine the most relevant power spectra. Our findings are considered to contribute to the discovery of objective truths about online customers' reactions to various user interface modes used by various online marketplaces that cannot be uncovered through more traditional research approaches like as surveys.

  • PDF