• 제목/요약/키워드: Neuroprotective activity

검색결과 294건 처리시간 0.024초

Papaverine Exerts Neuroprotective Effect by Inhibiting NLRP3 Inflammasome Activation in an MPTP-Induced Microglial Priming Mouse Model Challenged with LPS

  • Leem, Yea-Hyun;Park, Jin-Sun;Park, Jung-Eun;Kim, Do-Yeon;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제29권3호
    • /
    • pp.295-302
    • /
    • 2021
  • Microglial priming is the process of microglial proliferation and activation in response to neurodegeneration and abnormal protein accumulation. Priming makes microglia susceptible to secondary inflammatory stimuli and causes exaggerated inflammatory responses. In the present study, we established a microglial priming model in mice by administering a single injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 20 mg/kg). MPTP induced microglial activation without dopaminergic degeneration; however, subsequent treatment with a sub-toxic dose of lipopolysaccharides (LPS) induced an amplified inflammatory response and caused nigrostriatal dopaminergic degeneration. These pathological and inflammatory changes, including microglial activation and dopaminergic cell loss in the substantia nigra (SN) area were reversed by papaverine (PAP) administration. In addition, MPTP/LPS enhanced interleukin-1β (IL-1β) expression and processing via nod-like receptor protein 3 (NLRP3) inflammasome activation in the SN region of mice. However, PAP treatment suppressed inflammasome activation and subsequent IL-1β maturation. Moreover, PAP inhibited nuclear factor-κB (NF-κB) and enhanced cAMP-response element binding protein (CREB) activity in the SN of MPTP/LPS mice. These results suggest that PAP inhibits the activation of NLRP3 inflammasome by modulating NF-κB and CREB signaling pathways, which results in reduced microglial activation and neuronal cell death. Thus, PAP may be a potential candidate for the treatment of Parkinsons's disease, which is aggravated by systemic inflammation.

Ginsenoside compound K reduces ischemia/reperfusion-induced neuronal apoptosis by inhibiting PTP1B-mediated IRS1 tyrosine dephosphorylation

  • Jing, Fu;Liang, Yu;Qian, Yu;Nengwei, Yu;Fei, Xu;Suping, Li
    • Journal of Ginseng Research
    • /
    • 제47권2호
    • /
    • pp.274-282
    • /
    • 2023
  • Background: Ginsenoside compound K (CK) stimulated activation of the PI3K-Akt signaling is one of the major mechanisms in promoting cell survival after stroke. However, the underlying mediators remain poorly understood. This study aimed to explore the docking protein of ginsenoside CK mediating the neuroprotective effects. Materials and methods: Molecular docking, surface plasmon resonance, and cellular thermal shift assay were performed to explore ginsenoside CK interacting proteins. Neuroscreen-1 cells and middle cerebral artery occlusion (MCAO) model in rats were utilized as in-vitro and in-vivo models. Results: Ginsenoside CK interacted with recombinant human PTP1B protein and impaired its tyrosine phosphatase activity. Pathway and process enrichment analysis confirmed the involvement of PTP1B and its interacting proteins in PI3K-Akt signaling pathway. PTP1B overexpression reduced the tyrosine phosphorylation of insulin receptor substrate 1 (IRS1) after oxygen-glucose deprivation/reoxygenation (OGD/R) in neuroscreen-1 cells. These regulations were confirmed in the ipsilateral ischemic hemisphere of the rat brains after MCAO/R. Ginsenoside CK treatment reversed these alterations and attenuated neuronal apoptosis. Conclusion: Ginsenoside CK binds to PTP1B with a high affinity and inhibits PTP1B-mediated IRS1 tyrosine dephosphorylation. This novel mechanism helps explain the role of ginsenoside CK in activating the neuronal protective PI3K-Akt signaling pathway after ischemia-reperfusion injury.

Therapeutic Potential of Active Components from Acorus gramineus and Acorus tatarinowii in Neurological Disorders and Their Application in Korean Medicine

  • Cheol Ju Kim;Tae Young Kwak;Min Hyeok Bae;Hwa Kyoung Shin;Byung Tae Choi
    • 대한약침학회지
    • /
    • 제25권4호
    • /
    • pp.326-343
    • /
    • 2022
  • Neurological disorders represent a substantial healthcare burden worldwide due to population aging. Acorus gramineus Solander (AG) and Acorus tatarinowii Schott (AT), whose major component is asarone, have been shown to be effective in neurological disorders. This review summarized current information from preclinical and clinical studies regarding the effects of extracts and active components of AG and AT (e.g., α-asarone and β-asarone) on neurological disorders and biomedical targets, as well as the mechanisms involved. Databases, including PubMed, Embase, and RISS, were searched using the following keywords: asarone, AG, AT, and neurological disorders, including Alzheimer's disease, Parkinson's disease, depression and anxiety, epilepsy, and stroke. Meta-analyses and reviews were excluded. A total of 873 studies were collected. A total of 89 studies were selected after eliminating studies that did not meet the inclusion criteria. Research on neurological disorders widely reported that extracts or active components of AG and AT showed therapeutic efficacy in treating neurological disorders. These components also possessed a wide array of neuroprotective effects, including reduction of pathogenic protein aggregates, antiapoptotic activity, modulation of autophagy, anti-inflammatory and antioxidant activities, regulation of neurotransmitters, activation of neurogenesis, and stimulation of neurotrophic factors. Most of the included studies were preclinical studies that used in vitro and in vivo models, and only a few clinical studies have been performed. Therefore, this review summarizes the current knowledge on AG and AT therapeutic effects as a basis for further clinical studies, and clinical trials are required before these findings can be applied to human neurological disorders.

Nicotinamide Mononucleotide Adenylyl Transferase 2 Inhibition Aggravates Neurological Damage after Traumatic Brain Injury in a Rat Model

  • Xiaoyu Gu;Haibo Ni;XuGang Kan;Chen Chen;Zhiping Zhou;Zheng Ding;Di Li;Bofei Liu
    • Journal of Korean Neurosurgical Society
    • /
    • 제66권4호
    • /
    • pp.400-408
    • /
    • 2023
  • Objective : Nicotinamide mononucleotide adenylyl transferase 2 (NMNAT2) is a crucial factor for the survival of neuron. The role of NMNAT2 in damage following traumatic brain injury (TBI) remains unknown. This study was designed to investigate the role of NMNAT2 in TBI-induced neuronal degeneration and neurological deficits in rats. Methods : The TBI model was established in Sprague-Dawley rats by a weight-dropping method. Real-time polymerase chain reaction, western blot, immunofluorescence, Fluoro-Jade C staining, and neurological score analyses were carried out. Results : NMNAT2 mRNA and protein levels were increased in the injured-side cortex at 6 hours and peaked 12 hours after TBI. Knocking down NMNAT2 with an injection of small interfering RNA in lateral ventricle significantly exacerbated neuronal degeneration and neurological deficits after TBI, which were accompanied by increased expression of BCL-2-associated X protein (Bax). Conclusion : NMNAT2 expression is increased and NMNAT2 exhibits neuroprotective activity in the early stages after TBI, and Bax signaling pathway may be involved in the process. Thus, NMNAT2 is likely to be an important target to prevent secondary damage following TBI.

허혈-재관류 유도 신경세포사멸에 대한 초석잠 추출물의 신경보호 효과 연구 (Neuroprotective Effects of Stachys sieboldii Miq. Extract Against Ischemia/reperfusion-induced Apoptosis in SH-SY5Y Neuroblastoma Cells)

  • 이영경;김철환;신수영;황병수;서민정;황혜진;최경민;정진우
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2020년도 춘계학술대회
    • /
    • pp.76-76
    • /
    • 2020
  • Stachys sieboldii Miq. (chinese artichoke), which has been extensively used in oriental traditional medicine to treat of ischemic stroke; however, the role of Stachys sieboldii Miq. (SSM) in cerebral ischemia/reperfusion (I/R) injury is not yet fully understood. In the current study, the neuroblastoma cell line (SH-SY5Y) were subjected to oxygen-glucose deprivation/reperfusion (OGD/R) to simulate I/R injury in vitro model. The results showed that SSM improved OGD/R-induced inhibitory effect on cell viability of SH-SY5Y Cells. SSM displayed anti-oxidative activity as proved by the decreased levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in OGD/R-induced SH-SY5Y Cells. In addition, cell apoptosis was markedly decreased after SSM treatment in OGD/R-induced SH-SY5Y Cells. The up-regulation of Bcl-2 and down-regulation of Bax, thus reducing the Bax/Bcl-2 ratio that in turn protected the activation of caspase-9 and -3, and inhibition of poly (ADP-ribose) polymerase cleavage, which was associated with the blocking of cytochrome c release to the cytoplasm. Collectively, SSM protected human neuroblastoma SH-SY5Y cells from OGD/R-induced injury via preventing mitochondrial-dependent pathway through scavenging excessive ROS, suggesting that SSM might be a potential agent for the ischemic stroke therapy.

  • PDF

미나리 추출물의 기억력 손상 억제와 산화스트레스 억제 효과 및 Isorhamnetin 분석 (Inhibitory Effects of Dropwort (Oenanthe javanica) Extracts on Memory Impairment and Oxidative Stress and the Qualitative Analysis of Isorhamnetin in the Extracts)

  • 원범영;신기영;하현지;위지향;윤여상;김예리;박용진;정경옥;성혜미;이형근
    • 한국식품영양과학회지
    • /
    • 제45권1호
    • /
    • pp.1-11
    • /
    • 2016
  • 본 연구는 한국인이 일상생활에서 주로 상용하는 미나리에 대해 기억력 관련 효과와 항산화 효과, 미나리 추출물의 flavonoid 중 isorhamnetin을 분석하여 기능성식품 개발 및 이용에 기여하고자 실시하였다. Acetylcholinesterase의 활성 억제를 측정한 결과 화순미나리 추출물이 28.59%로 가장 높게 나타났으며, 나주미나리 추출물 25.11%와 유의적인 차이가 없었다. SH-SY5Y 세포사멸에 미치는 영향을 측정한 결과 DMSO와 비교하여 화순미나리 추출물 37.23%와 나주미나리 추출물 36.68%로 세포사멸이 유의적으로 감소하였다. 수동회피실험 결과 scopolamine 처리에 의해 기억력이 손상된 동물모델에서 미나리 추출물을 투여하였을 때 vehicle control보다 latency time이 높게 나타났다. DPPH 및 ABTS 라디칼 소거능 측정 결과 화순, 나주, 의령 미나리 추출물 모두 미나리 처리 그룹군 간에도 유의적 차이가 있었고(P<0.05), 화순미나리 추출물이 총 폴리페놀 함량 117 mg/g, 총 플라보노이드 함량 30 mg GAE/g으로 가장 높게 측정되었다. TBARS 측정 결과 미나리 추출물 $440{\mu}g/mL$의 농도에서 화순미나리 추출물이 50.7%의 억제력으로 가장 높았으며, 나주와 의령미나리 추출물보다 유의하게 높았다. 미나리 추출물의 플라보노이드 중 isorhamnetin을 분석한 결과 표준용액과 미나리 추출물의 머무름 시간이 14분대로 피크 유지시간이 일치하였으며, 동일한 spectrum을 나타내어 정확한 isorhamnetin의 분리를 확인하였다. 또한 LC/MS/MS를 통한 분석 결과 표준용액과 미나리 추출물에서 동일 시간대에 TIC를 확인하였고 precursor ion은 317 $[M-H]^+$ m/z, product ion은 302 $[M-H]^+$ m/z로 확인할 수 있었다. 이러한 연구 결과에 기초하여 미나리 추출물은 천연 항산화제와 기억력 개선제로써의 활용 가치를 시사한다고 사료된다. 또한 건강기능성 소재로서 식품산업 분야의 이용률 향상에 도움이 될 것으로 판단된다.

소엽맥문동-에틸아세테이트 분획물의 아밀로이드 베타단백질-유발 세포독성에 대한 억제 효능 (Protective Effect of the Ethyl Acetate-fraction of Methanol Extract of Ophiophogon japonicus on Amyloid beta Peptide-induced Cytotoxicity in PC12 Cells)

  • 문자영;김은숙;최수진;김진익;최낙식;이경;박우진;최영환
    • 생명과학회지
    • /
    • 제29권2호
    • /
    • pp.173-180
    • /
    • 2019
  • Amyloid ${\beta}$-단백질($A{\beta}$)은 알츠하이머 질병의 특징인 노인성 반점의 주요 성분이며 in vivo와 in vitro에서 신경세포를 대상으로 독성효과를 유발한다. 항산화물질과 프로테오글리칸을 포함한 많은 환경인자들에는 $A{\beta}$의 독성을 완화하는 물질들이 존재한다. 특히, 천연물질들 중에서 자신은 독성이 없으며, 알츠하이머 환자에게 치료효능을 나타내는 천연화합물들을 순수 분리하는 것은 매우 가치가 있다. 본 연구에서는 소엽맥문동의 메탄올 추출물로부터 에틸아세테이트 유기용매로 분획한 물질(OJEA)을 대상으로 in vitro상에서 신경세포독성 제어효능을 탐색하였다. 본 실험을 위해 PC12 세포주에 $A{\beta}_{25-35}$로 유발한 독성에 대한 OJEA 분획물의 억제효능을 MTT 환원법 분석으로 측정하였으며, ${\beta}$-secretase 활성에 대한 OJEA 분획물의 억제효능을 세포기반 ${\beta}$-secretase assay system으로 측정하였다. 또한 PC12 세포에서 $A{\beta}_{25-35}$에 의해 유도된 산화적 스트레스에 대한 OJEA 분획물의 억제효과를 지질과산화 분석법으로 수행하였다. 본 연구의 결과는 OJEA 분획물이 PC12 세포에서 $A{\beta}_{25-35}$에 의해 유도된 세포독성을 강하게 예방 또는 억제하는 효과가 있음을 확인하였으며, 또한 ${\beta}$-secretase의 활성을 억제함으로써 $A{\beta}$의 생성을 완화하는 효과를 예상할 수 있었다. OJEA 분획물은 또한 PC12 세포에서 $A{\beta}_{25-35}$에의 노출에 의하여 유도되는 malondialdehyde (MDA)의 생성을 강하게 억제하였다. 결론적으로, 본 연구의 결과에 의하면 OJEA 분획물에는 $A{\beta}$ 독성에 대한 신경세포의 보호효능을 함유하는 생리활성물질이 함유되어 있음을 제시한다.

Trimethyltin으로 유도된 기억장애 흰쥐에서 백삼의 신경보호효과 (The Neuroprotective Effect of White Ginseng (Panax ginseng C. A. Meyer) on the Trimethyltin (TMT)-Induced Memory Deficit Rats)

  • 이승은;심인섭;김금숙;임성빈;박현정;심현수;예민숙;김승유
    • 한국약용작물학회지
    • /
    • 제19권6호
    • /
    • pp.456-463
    • /
    • 2011
  • The present study examined the effects of Korean white ginseng (WG, Panax ginseng C. A. Meyer) on the learning and memory function and the neural activity in rats with trimethyltin (TMT)-induced memory deficits. The rats were administered with saline or WG (WG 100 or 300 mg/kg, p.o.) daily for 21 days. The cognitive improving efficacy of WG on the amnesic rats, which was induced by TMT, was investigated by assessing the Morris water maze test and by performing immunohistochemistries on choline acetyltransferase (ChAT), acetylcholinesterase (AchE), cAMP responsive element binding protein (CREB) and brain derived neurotrophic factor (BDNF). The rats treated with TMT injection (control group) showed impaired learning and memory of the tasks, but the rats treated with TMT injection and WG administration produced significant improvement of the escape latency to find the platform in the Morris water maze at the 2nd and 4th days compared to that of the control group. In the retention test, the WG 100 and WG 300 groups showed significantly increased crossing number around the platform compared to that of the control group (p < 0.001). Consistently with the behavioral data, result of immunohistochemistry analysis showed that WG 100 mg/kg significantly alleviated the loss of BDNF-ir neurons in the hippocampus compared to that of the control group (p < 0.01). Also, treatment with WG has a trend to be increased the cholinergic neurons in the hippocampal CA1 and CA3 areas as compared to that of the control group. These results suggest that WG may be useful for improving the cognitive function via regulation of neurotrophic activity.

Neuronal injury in AIDS dementia: Potential treatment with NMDA open-channel blockers and nitric oxide-related species

  • Lipton, Stuart A.
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.19-29
    • /
    • 1996
  • The neurological manifestations of AIDS include dementia, encountered even in the absence of opportunistic superinfection or malignancy. The AIDS Dementia Complex appears to be associated with several neuropathological abnormalities, including astrogliosis and neuronal injury or loss. How can HIV-1 result in neuronal damage if neurons themselves are only rarely, if ever, infected by the vitus\ulcorner In vitro experiments from several different laboratiories have lent support to the existence of HIV- and immune-related toxins. In one recently defined pathway to neuronal injury, HIV-infected macrophages/microglia as well as macrophages activated by HIV-1 envelope protein gp120 appear to secrete excitants/neurotoxins. These substances may include arachidonic acid, platelet-activating factor, free radicals (NO - and O$_2$), glutamate, quinolinate, cysteine, cytokines (TNF-${\alpha}$, IL1-B, IL-6), and as yet unidentified factors emanating from stimulated macrophages and possibly reactive astrocytes. A final common pathway for newonal suscepubility appears to be operative, similar to that observed in stroke, trauma, epilepsy, and several neurodegenerative diseases, including Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This mechanism involves excessive activation of N-methyl-D-aspartate (NMDA) receptor-operated channels, with resultant excessive influx of Ca$\^$2+/ leading to neuronal damage, and thus offers hope for future pharmacological intervention. This chapter reviews two clinically-tolerated NMDA antagonists, memantine and nitroglycerin; (ⅰ) Memantine is an open-channel blocker of the NMDA-associated ion channel and a close congener of the anti-viral and anti-parkinsonian drug amantadine. Memantine blocks the effects of escalating levels of excitotoxins to a greater degree than lower (piysiological) levels of these excitatory amino acids, thus sparing to some extent normal neuronal function. (ⅱ) Niuoglycerin acts at a redox modulatory site of the NMDA receptor/complex to downregulate its activity. The neuroprotective action of nitroglycerin at this site is mediated by n chemical species related to nitric oxide, but in a higher oxidation state, resulting in transfer of an NO group to a critical cysteine on the NMDA receptor. Because of the clinical safety of these drugs, they have the potential for trials in humans. As the structural basis for redox modulation is further elucidated, it may become possible to design even better redox reactive reagents of chinical value. To this end, redox modulatory sites of NMDA receptors have begun to be characterized at a molecular level using site-directed mutagenesis of recombinant subunits (NMDAR1, NMDAR2A-D). Two types of redox modulation can be distinguished. The first type gives rise to a persistent change in the functional activity of the receptor, and we have identified two cysteine residues on the NMDARI subunit (#744 and #798) that are responsible for this action. A second site, presumably also a cysteine(s) because <1 mM N-ethylmaleimide can block its effect in native neurons, underlies the other, more transient redox action. It appears to be at this, as yet unidentified, site on the NMDA receptor that the NO group acts, at least in recombinant receptors.

  • PDF

Staurosporine에 의해 분화된 망막신경절세포에서 산화 스트레스 유도 세포사멸에 대한 차조기 추출물의 보호 효능 (Protective Effect of Perilla frutescens Extract against Oxidative Stress-Induced Cell Death in a Staurosporine-Differentiated Retinal Ganglion Cell Line)

  • 이보경;최리라;이지인;이두이;장선영;김소희;정이숙
    • 한국식품영양과학회지
    • /
    • 제46권2호
    • /
    • pp.161-168
    • /
    • 2017
  • 본 연구에서는 산화적 스트레스로 유도한 시신경 세포사멸에 대한 차조기 물 추출물(PFE)의 효과를 확인하였다. Staurosporine으로 분화된 ssdRGC-5 세포에 buthionine과 glutamate(B/G)로 산화적 스트레스를 유도하였으며, LDH release assay, MTT reduction assay를 통하여 PFE가 농도 의존적으로 B/G에 의한 세포사멸을 억제함을 관찰하였다. 세포사멸의 기전을 연구하기 위해 caspase 활성, 세포 내 ROS 생성량, 세포고사 관련 단백질 발현을 관찰한 결과, B/G에 의해 증가한 ROS 생성량, caspase 활성을 PFE가 억제하였고, 세포질로 방출된 cytochrome c와 미토콘드리아로 이동한 Bax도 감소함을 확인하였다. 이상의 결과로부터 차조기는 산화적 스트레스로 유도된 시신경 세포사멸 과정에서 항산화 효과와 미토콘드리아성 세포사멸을 완화함으로써 세포 보호 작용을 나타냄을 확인하였다.