• Title/Summary/Keyword: Neuropeptide

Search Result 183, Processing Time 0.021 seconds

Effect of 24 h Fasting on Gene Expression of AMPK, Appetite Regulation Peptides and Lipometabolism Related Factors in the Hypothalamus of Broiler Chicks

  • Lei, Liu;Lixian, Zhu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.9
    • /
    • pp.1300-1308
    • /
    • 2012
  • The 5'-adenosine monophosphate-activated protein kinase (AMPK) is a key part of a kinase-signaling cascade that acts to maintain energy homeostasis. The objective of this experiment was to investigate the possible effects of fasting and refeeding on the gene expression of hypothalamic AMPK, some appetitive regulating peptides and lipid metabolism related enzymes. Seven-day-old male broiler (Arbor Acres) chicks were allocated into three equal treatments: fed ad libitum (control); fasted for 24 h; fasted for 24 h and then refed for 24 h. Compared with the control, the hypothalamic gene expression of $AMPK{\alpha}2$, $AMPK{\beta}1$, $AMPK{\beta}2$, $AMPK{\gamma}1$, Ste20-related adaptor protein ${\beta}$ ($STRAD{\beta}$), mouse protein $25{\alpha}$ ($MO25{\alpha}$) and agouti-related peptide (AgRP) were increased after fasting for 24 h. No significant difference among treatments was observed in mRNA levels of $AMPK{\alpha}1$, $AMPK{\gamma}2$, LKB1 and neuropeptide Y (NPY). However, the expression of $MO25{\beta}$, pro-opiomelanocortin (POMC), corticotropin-releasing hormone (CRH), ghrelin, fatty acid synthase (FAS), acetyl-CoA carboxylase ${\alpha}$ ($ACC{\alpha}$), carnitine palmitoyltransferase 1 (CPT-1) and sterol regulatory element binding protein-1 (SREBP-1) were significantly decreased. The present results indicated that 24 h fasting altered gene expression of AMPK subunits, appetite regulation peptides and lipometabolism related factors in chick's hypothalamus; the hypothalamic FAS signaling pathway might be involved in the AMPK regulated energy homeostasis and/or appetite regulation in poultry.

Analysis of copy number variation in 8,842 Korean individuals reveals 39 genes associated with hepatic biomarkers AST and ALT

  • Kim, Hyo-Young;Cho, Seo-Ae;Yu, Jeong-Mi;Sung, Sam-Sun;Kim, Hee-Bal
    • BMB Reports
    • /
    • v.43 no.8
    • /
    • pp.547-553
    • /
    • 2010
  • Biochemical tests such as aspartate aminotransferase (AST) and alanine aminotransferase (ALT) are useful for diagnosing patients with liver disease. In this study, we tested the association between copy number variation and the hepatic biomarkers AST and ALT based on 8,842 samples from population-based cohorts in Korea. We used Affymetrix Genome-Wide Human 5.0 arrays and identified 10,534 CNVs using HelixTree software. Of the CNVs tested using univariate linear regression, 100 CNVs were significant for AST and 16 were significant for ALT (P < 0.05). We identified 39 genes located within the CNV regions. DKK1 and HS3ST3B1 were shown to play roles in heparan sulfate biosynthesis and the Wnt signaling pathway, respectively. NAF1 and NPY1R were associated with glycoprotein processes and neuropeptide Y receptor activity based on GO categories. PTER, SOX14 and TM7SF4 were expressed in liver. DPYS and CTSC were found to be associated with dihydropyrimidinuria and Papillon-Lefevre syndrome phenotypes using OMIM. NPY5R was found to be associated with dyslipidemia using the Genetic Association Database.

Excitatory effect of KR-25018 and capsaicin on the isolated guinea pig bronchi

  • 정이숙;신화섭;박노상;문창현;조태순
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.252-252
    • /
    • 1996
  • We Investigated the peripheral excitatory effect of capsaicin and KR-25018, a newly synthesized capsaicin derivative which was demonstrated to have a potent analgesic activity. KR-25018 and capsaicin were found to be both potent efficacious contractors of isolated guinea pig bronchial smooth muscle. KR-25018 was equipotent with capsaicin and [Sar$\^$9/,Met(O$_2$)$\^$11/]-substance P, 10-fold more potent than histamine and 10-fold less potent than (${\beta}$ -Ala$\^$8/)-neurokinin A(4-10), and their -log(M)EC$\_$50/ values were 6.94${\pm}$0.08, 6.86${\pm}$0.05, 6.96${\pm}$0.07, 5.64${\pm}$0.04, 7.96${\pm}$0.02, respectively. Contractile responses to KR-25018 and capsaicin were potentiated by phosphoramidon (1 ${\mu}$M), an inhibitor of neuropeptide-inactivating endopeptidase, but completely abolished in a calcium-free medium. These responses to KR-25018 and capsaicin were unaffected by the NK-1 antagonist CP96345 (1${\mu}$M), partially inhibited by the NK-2 antagonist SR48968 (1 ${\mu}$M) but almost completely abolished by a combination of the antagonists. A vanilloid receptor antagonist capsazepine competitively antagonized the responses to both KR-25018 and capsaicin (pA$_2$: aganst KR-25018, 5.98${\pm}$0.47; against capsaicin, 5.80${\pm}$0.31), and a capsaicin-sensitive cation channel antagonist ruthenium red caused significant reduction in the maximum responses to KR-25018 and capsaicin (pD'$_2$: against KR-25018, 4.61${\pm}$0.33; against capsaicin 4.96${\pm}$0.21). In conclusion, the present results suggest that KR-25018 and cpasaicin act on the same vanilloid receptor inducing the influx of calcium through ruthenium red-sensitive cation channel and produce contractile responses via the release of tachykinins that act on both NK-1 and NK-2 receptor subtypes.

  • PDF

Effects of Alpha 1- and Alpha 2-Adrenoreceptor Stimulation on Galanin mRNA Expression in Primary Cultured Superior Cervical Ganglion Neurons

  • Xing, Yi;Chen, Xiuying;Liu, Zhen;Li, Hao;Liu, Huaxiang;Li, Zhenzhong
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.315-319
    • /
    • 2011
  • Galanin (Gal) is a 29-amino-acid neuropeptide which is expressed in superior cervical ganglion (SCG) neurons and plays a trophic role in the adult animal and acts as an inhibitory modulator of cholinergic and noradrenergic neurotransmission. Whether activation or inhibition of alpha-adrenoreceptors infl uences Gal mRNA expression in SCG neurons remains unknown. Here, we have evaluated the possible regulation of Gal mRNA expression with acute (4 h) and chronic (4 days) stimulation of alpha 1- and alpha 2-adrenoreceptor agonists or antagonists in primary cultured SCG neurons. The results showed that the amount of Gal mRNA expression in cultured SCG neurons increased signifi cantly after chronic stimulation with alpha 2-adrenoreceptor antagonist yohimbine compared with control SCG neurons at the same time point, whereas the amount of Gal mRNA expression decreased signifi cantly after chronic stimulation with alpha 2-adrenoreceptor agonist clonidine as compared with that in control group. All these effects were not dose-dependent on the administration of alpha 2-adrenoreceptor agonist clonidine or alpha 2-adrenoreceptor antagonist yohimbine. Alpha 1-adrenoreceptor agonist phenylephrine or antagonist prazosin chronic stimulation did not have effects on Gal mRNA expression. Acute exposure of these agents did not have effects on Gal mRNA expression. The present study showed that Gal may be regulated by activation or inhibition of alpha 2-adrenoreceptors, but not alpha 1-adrenoreceptors in sympathetic neurons.

The Growth-promoting Effect of Tetrabasic Zinc Chloride is Associated with Elevated Concentration of Growth Hormone and Ghrelin

  • Zhang, Bingkun;Guo, Yuming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.10
    • /
    • pp.1473-1478
    • /
    • 2008
  • An experiment was conducted to investigate the mechanism for the effect of tetrabasic zinc chloride (TBZC) in enhancing growth performance of weanling piglets. Gut-brain peptides play an important role in the regulation of growth and appetite in animals. This study evaluated the effects of TBZC on blood concentrations of growth hormone (GH), ghrelin, insulin-like growth factor-I (IGF-I), cholecystokinin (CCK) and neuropeptide Y (NPY). Seventy-two weanling piglets (Landrace$\times$Large White) with an initial body weight (BW) of $6.7{\pm}0.16kg$ and aged $24{\pm}1days$ were assigned to three dietary treatments: i) control diet without TBZC supplement, ii) the control diet supplemented with 2,000 mg Zn from TBZC/kg and iii) TBZC-supplemented diet pair-fed with respect to the control diet. Each treatment had six replications (pens) of four piglets. At the end of a 14-d experimental period, piglets were weighed and feed consumption was measured, and blood samples were collected for assays of GH, ghrelin, IGF-I, CCK and NPY concentrations. The inclusion of TBZC in the diet increased average daily gain (p<0.01), average daily feed intake (p<0.05), and feed conversion ratio (p<0.05). Pair-fed piglets had higher ADG, and lower FCR than (p<0.05) Control piglets. Supplementation of the diet with TBZC increased (p<0.05) serum GH and plasma ghrelin levels in weanling piglets, but did not affect (p>0.05) serum IGF-I and plasma NPY and CCK concentrations. Pair-fed piglets had lower (p<0.05) serum GH levels than TBZC-supplemented piglets, but did not (p>0.05) differ from Control piglets. These data indicated that TBZC elevated the concentration of ghrelin and GH. This observation may partly explain the beneficial effects of TBZC on growth performance of weanling piglets.

Formation of Brain Tumor and Lymphoma by Deregulation of Apoptosis Related Gene Expression in VP-SV40 T Ag Transgenic Mice

  • Lee, Jeong-Woong;Lee, Eun-Ju;Lee, Hoon-Taek;Chung, Kil-Saeng;Ryoo, Zae-Yoong
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.47-47
    • /
    • 2001
  • The neuropeptide vasopressin (VP) is a nine- amino acid hormone synthesized as preprohormone in the cell bodies of hypothalamic magnocellular neurons. The tumor in magnocellular neurons of the hypothalamus is associated with disfunctions of the cell bodies, leading to the diabetes insipidus. In order to study with the diabetes insipidus caused by a defect in VP synthesis and its secretion, we have produced the transgenic mice regulated by vasopressin promoter inserted to SV40 T antigen coding sequence (pVPSV.IGR2.1). One transgenic line expressing high levels of SV40 T antigen was propagated. The founder and all transgene positive adult animals have appeared with shorten mortality or apparent phenotypic abnormalities, including immune complex disease, and eventually die between 4 and 8 months of age. The mRNA and protein of SV40T antigen transgene were detected in brain of fetus as well as in brain, spleen, lung and lymph node in moribund at the age of 20 weeks. Histological analysis of transgenic mice showed that tumor developed in brain similar to primitive neuroectodermal tumors (PNET) in man. We also detected lymphomas in spleen and lymph node, and consequent tumor formation in various tissues of the transgenic mice. In pVPSV.IGR2.1, 21% mice showed brain tumor (PNET) at 5 weeks and 100% mice showed brain tumor after 15 weeks. In addition, Expression of apoptosis related genes (Bcl-28 & Bax) was increased over their age in mice with PNET as compared to control mice. Apoptosis related gene expression might be deregulated in mice with brain tumor. However, transgenic mice were not developed with the diabetes insipidus. These mice represent the first disease model to exhibit primitive neuroectodermal tumor in brain, as well as a unique model system for exploring the cellular pathogenesis of lymphomas.

  • PDF

Naringenin stimulates cholecystokinin secretion in STC-1 cells

  • Park, Min;Kim, Kyong;Lee, Yu Mi;Rhyu, Mee Ra;Kim, Hye Young
    • Nutrition Research and Practice
    • /
    • v.8 no.2
    • /
    • pp.146-150
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Cholecystokinin (CCK), a hormone or neuropeptide, is secreted in response to intraluminal nutrients by enteroendocrine I-cells of the intestine and has important physiological actions related to appetite regulation and satiety. The stimulation on CCK secretion from the intestine is of potential relevance for body weight management. Naringenin (4',5,7-trihydroxyflavanone) and its glycoside naringin (naringenin 7-rhamnoglucoside) have been reported to have many biological functions. In the current study, we investigated the question of whether naringenin and naringin could stimulate CCK secretion and then examined the mechanisms involved in CCK release. MATERIALS/METHODS: STC-1 cells were used as a model of enteroendocrine cells. CCK release and changes in intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) were measured after incubation of cells with naringenin and naringin for 1 h. RESULTS: Naringenin caused significant (P < 0.05) stimulation of CCK secretion, but naringin did not. In addition, regarding the secretory mechanisms, naringenin-induced CCK secretion involved increases in $[Ca^{2+}]_i$, influx of extracellular $Ca^{2+}$, at least in part, and activation of TRP channels, including TRPA1. CONCLUSION: Findings of this study suggest that naringenin could have a role in appetite regulation and satiety.

Improved Expression of Muscle-derived Growth Hormone Releasing Hormone from ${\alpha}$-Skeletal-muscle Actin Enhancer/Cytomegalovirus Hybrid Enhancer/Promoter

  • Gong, Xia;Meng, Qingyong;Jin, Weiwu;Li, Ning
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.5
    • /
    • pp.784-788
    • /
    • 2007
  • Growth hormone-releasing hormone (GHRH), a hypothalamic neuropeptide can stimulate the growth hormone secretion from the anterior pituitary. In this study, a porcine GHRH expression plasmid pHC-GHRH was used to enhance growth performance through ectopic expressions in muscle tissues of rats. Rats injected with the plasmid of pHC-GHRH and pCMV-GHRH exhibited cumulative weight gains 6.4% and 1% greater than controls. During a 5-day period, significant weight gain differences were observed as follows compared with that of control: during 5-10 days post-injection (DPI) period, the group pHC-GHRH on average 14.5% heavier than controls, $40.73{\pm}0.88$ g vs. $35.57{\pm}1.23$ g (p = 0.0023); during 10-15 DPI period, the group pHC-GHRH on average 13.6% heavier than controls, $37.49{\pm}2.85$ g vs. $33.00{\pm}1.56$ g (p = 0.0146); during 15-20 DPI period, the group pHC-GHRH on average 17.8% heavier than controls, $25.64{\pm}1.39$ g vs. $21.77{\pm}1.27$ g (p<0.05). In addition, plasmids-treated rats maintained higher serum IGF-I than controls. Significant differences of IGF-I were observed on 13 DPI and on 40 DPI in pHC-GHRH group compared with that of controls. This was accomplished through the use of an improved expression cassette that included the cytomegalovirus (CMV) immediate early enhancer/promoter in combination with a 1.5-kilobase portion of porcine ${\alpha}$-skeletal muscle actin promoter.

Stress and Immune Function (스트레스와 면역기능)

  • Koh, Kyung-Bong
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.4 no.1
    • /
    • pp.146-154
    • /
    • 1996
  • The impact of stress on immune function is known to be associated with the interactions among the central nervous system(CNS), neuroendocrine system, and immune system. The main pathways between stress and immune system are wiring of lymphoid organs and neuroendocrine system. Immune system also produces neuropeptides, which modulate immune system. Mediators of psychosocial influences on immune function are found to be peptides released by the pituitry, hormones, md autonomic nervous system. Hypothalamus integrates endocrine, neural and immune systems. Particularly, paraventricular nucleus appears to play a central role in this integration. On the other hand, endocrine system receives feedback from the immune system. The major regulatory pathways which pituitary modulates include the hypothalamic-pituitary-adrenal-thymic(HPAT) axis, hypothalamic-pituitary-gonadal-thymic(HPGT) axis, pineal-hypothalamic-pituitary(PHP) axis. Bidirectional pathways such as feedforward and feedback pathways are suggested in the interaction between stress and immune system. It suggests that psychosocial inputs affect immune function, but also that immunological inputs affect psychosocial function. Thus, prospective studies for elucidating the relationship between stress and immune function should incorporate measures of immune function as well as measures of endocrine, autonomic, and brain activities at the same time.

  • PDF

Inhibitory Effect of Inflammatory Cytokines Secretion from Brain Neuroglial Cells by RADIX ASPARAGI (천문동(天門冬)에 의한 뇌신경교세포(腦神經膠細胞)로부터 염증성(炎症性) 세포활성물질(細胞活性物質) 분비(分泌)의 억제(抑制) 효과(效果))

  • Kang Heong-Won;Lyu Yeong-Su
    • Journal of Oriental Neuropsychiatry
    • /
    • v.9 no.1
    • /
    • pp.73-82
    • /
    • 1998
  • Substantial evidence has accumulated that Alzheimer's disease is associated with a local inflammatory reaction in senile plaques which may be immunemediated, and includes extensive Brain Neuroglial invasion, lymphocytic infiltration, cytokine deposition. Tumor necrosis factor a (TNF-a) is a cytokine which plays an important immunoenhancing role in the local acute and chronic inflammatory response in response to a variety of stimuli. The neuropeptide, substance P, can stimulate secretion of TNF-a from Brain Neuroglial cells. Neuroglia have substance P receptors in the central nervous system. WQ investigated whether RADIX ASPARAGI inhibits secretion of TNF-a from primary cultures of Brain Neuroglial cells containing both astrocyte (∼90%) and microglia (∼10%). RADIX ASPARAGI dose-dependently inhibited the TNF-a secretion induced by substance P plus lipopolysaccharide (LPS). In cultures enriched for micoglia (>95% pure). LPS stimulated the secretion of TNF-a but substance P caused no enhancement. Because there was no synergism between substance P and LPS in the microglial cultures it is resonable to substance P madiated enhancement of TNF-a secretion. IL-1 is a modulator of TNF-a secretion in the immune system. Also IL-1 has been shown to elevate TNF- a secretion from LPS-stimulated Brain Neuroglial cells while having no effect on Brain Neuroglial cells in the absence of LPS. We therfore investigated whether IL-1 mediates the RADIX ASPARAGI inhibition of TNF-a secretion form primary Brain Neuroglial cells. Treatment of RADIX ASPARAGI to mixed cultures stimulated with both substance P and LPS decreased TNF-a secretion to the level observed with LPS alone. These results indicate that RADIX ASPARAGI possess strong antiinflammatory activity in the cental nervous system by inhibition of inflammatory cytokines secretion from Brain Neuroglial cells.

  • PDF