• Title/Summary/Keyword: Neuropathic

Search Result 462, Processing Time 0.029 seconds

Nefopam Reduces Dysesthesia after Percutaneous Endoscopic Lumbar Discectomy

  • Ok, Young Min;Cheon, Ji Hyun;Choi, Eun Ji;Chang, Eun Jung;Lee, Ho Myung;Kim, Kyung Hoon
    • The Korean Journal of Pain
    • /
    • v.29 no.1
    • /
    • pp.40-47
    • /
    • 2016
  • Background: Neuropathic pain, including paresthesia/dysesthesia in the lower extremities, always develops and remains for at least one month, to variable degrees, after percutaneous endoscopic lumbar discectomy (PELD). The recently discovered dual analgesic mechanisms of action, similar to those of antidepressants and anticonvulsants, enable nefopam (NFP) to treat neuropathic pain. This study was performed to determine whether NFP might reduce the neuropathic pain component of postoperative pain. Methods: Eighty patients, who underwent PELD due to herniated nucleus pulposus (HNP) at L4-L5, were randomly divided into two equal groups, one receiving NFP (with a mixture of morphine and ketorolac) and the other normal saline (NS) with the same mixture. The number of bolus infusions and the infused volume for 3 days were compared in both groups. The adverse reactions (ADRs) in both groups were recorded and compared. The neuropathic pain symptom inventory (NPSI) score was compared in both groups on postoperative days 1, 3, 7, 30, 60, and 90. Results: The mean attempted number of bolus infusions, and effective infused bolus volume for 3 days was lower in the NFP group for 3 days. The most commonly reported ADRs were nausea, dizziness, and somnolence, in order of frequency in the NFP group. The median NPSI score, and all 5 median sub-scores in the NFP group, were significantly lower than that of the NS group until postoperative day 30. Conclusions: NFP significantly reduced the neuropathic pain component, including paresthesia/dysesthesia until 1 month after PELD. The common ADRs were nausea, dizziness, somnolence, and ataxia.

Anti-allodynic effect of bee venom on neuropathic pain in the rat

  • Lee, Bae-Hwan;Chae, Youn-Byoung;Hwang, Hye-Jeong;Choi, Young-Kook;Hahm, Dae-Hyun;Han, Seung-Moo;Kang, Sung-Keel;Lee, Hye-Jung;Pyun, Kwang-Ho;Shim, In-Sop
    • Advances in Traditional Medicine
    • /
    • v.6 no.4
    • /
    • pp.324-329
    • /
    • 2006
  • Neuropathic pain syndromes resulted from peripheral nerve injury appear to be resistant to conventional analgesics like opioids. However, it has been demonstrated that acupuncture including aqua-acupuncture may be effective in managing neuropathic pain. The present study was conducted to determine if bee venom injection into acupoint ihibits neuropathic pain, which is difficult to be treated by usual analgesics. Under pentobarbital anesthesia, male Sprague-Dawley rats were subjected to neuropathic surgery. Two weeks after nerve injury, mechanical and cold allodynia were tested in order to evaluate the antiallodynic effects of bee venom injection into an acupoint. Intraperitoneal injection of morphine inhibited mechanical allodynia dose-dependently. Bee venom injected into Zusanli acupoint significantly inhibited mechanical and cold allodynia. These results suggest that bee venom-acupuncture as well as morphine is very effective to inhibit mechanical allodynia.

The Use of 5% Lidocaine for Prolonged Analgesia in Neuropathic Pain Patients (신경병증성 통증 환자에서 지속적 진통을 위한 5% 리도카인의 사용)

  • Park, Sung-Wook;Kim, Dong-Ok;Kim, Keon-Sik;Choi, Young-Kyu;Kwon, Moo-Il;Shin, Kwang-Il;Lee, Doo-Ik
    • Journal of The Korean Dental Society of Anesthesiology
    • /
    • v.3 no.1 s.4
    • /
    • pp.6-9
    • /
    • 2003
  • Background: The use of neurolytic agents to control neuropathic pain has been described from the last century Phenol and ethyl alcohol have been widely used as neurolytic agents, however, their neurolytic effect is variable in efficacy and duration of action, and infrequently accompanied with grave complications. It has been found that 5% lidocaine causes irreversible conduction blockade in animal studies. The goal of this study was to evaluate the neurolytic effect of 5%o lidocaine on various neuropathic pain syndromes for prolonged analgesia. Methods: Twenty-five patients with a diagnosis of neuropathic pain including trigeminal neuralgia (n = 7), postherpetic neuralgia (n = 10), and postsurgical neuralgia (n = 8) were selected after failure of routine therapeutic regimens. After performing a diagnostic nerve block with 1% lidocaine and 5% lidocaine was injected. The patients were followed for 6 months. Visual analog scale (VAS) scores and side effects were recorded for each patients. Results: A significant decrease in pain scores after neurolytic blockade with 5% lidocaine was seen in all of three pain groups. All the patients reported immediate and prolonged pain relief lasting from 4 weeks to 6 months. None of patients exhibited any appreciable side effects or complications. Conclusions: We suggest that 5% lidocaine may be used safely and effectively for the purpose of prolonged analgesia in selected patients with intractable neuropathic pain syndromes.

  • PDF

Effect of Intravenous Lidocaine on the Neuropathic Pain of Failed Back Surgery Syndrome

  • Park, Chan-Hong;Jung, Sug-Hyun;Han, Chang-Gyu
    • The Korean Journal of Pain
    • /
    • v.25 no.2
    • /
    • pp.94-98
    • /
    • 2012
  • Background: An intravenous infusion of lidocaine has been used on numerous occasions to produce analgesia in neuropathic pain. In the cases of failed back surgery syndrom, the pain generated as result of abnormal impulse from the dorsal root ganglion and spinal cord, for instance as a result of nerve injury may be particularly sensitive to lidocaine. The aim of the present study was to identify the effects of IV lidocaine on neuropathic pain items of FBSS. Methods: The study was a randomized, prospective, double-blinded, crossover study involving eighteen patients with failed back surgery syndrome. The treatments were: 0.9% normal saline, lidocaine 1 mg/kg in 500 ml normal saline, and lidocaine 5 mg/kg in 500 ml normal saline over 60 minutes. The patients underwent infusions on three different appointments, at least two weeks apart. Thus all patients received all 3 treatments. Pain measurement was taken by visual analogue scale (VAS), and neuropathic pain questionnaire. Results: Both lidocaine (1 mg/kg, 5 mg/kg) and placebo significantly reduced the intense, sharp, hot, dull, cold, sensitivity, itchy, unpleasant, deep and superficial of pain. The amount of change was not significantly different among either of the lidocaine and placebo, or among the lidocaine treatments themselves, for any of the pain responses, except sharp, dull, cold, unpleasant, and deep pain. And VAS was decreased during infusion in all 3 group and there were no difference among groups. Conclusions: This study shows that 1 mg/kg, or 5 mg/kg of IV lidocaine, and palcebo was effective in patients with neuropathic pain attributable to FBSS, but effect of licoaine did not differ from placebo saline.

Antinociceptive Effect of Cyperi rhizoma and Corydalis tuber Extracts on Neuropathic Pain in Rats

  • Choi, Jae-Gyun;Kang, Suk-Yun;Kim, Jae-Min;Roh, Dae-Hyun;Yoon, Seo-Yeon;Park, Jin Bong;Lee, Jang-Hern;Kim, Hyun-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.387-392
    • /
    • 2012
  • In this study, we examined the antinociceptive effect of Cyperi rhizoma (CR) and Corydalis tuber (CT) extracts using a chronic constriction injury-induced neuropathic pain rat model. After the ligation of sciatic nerve, neuropathic pain behavior such as mechanical allodynia and thermal hyperalgesia were rapidly induced and maintained for 1 month. Repeated treatment of CR or CT (per oral, 10 or 30 mg/kg, twice a day) was performed either in induction (day 0~5) or maintenance (day 14~19) period of neuropathic pain state. Treatment of CR or CT at doses of 30 mg/kg in the induction and maintenance periods significantly decreased the nerve injury-induced mechanical allodynia. In addition, CR and CT at doses of 10 or 30 mg/kg alleviated thermal heat hyperalgesia when they were treated in the maintenance period. Finally, CR or CT (30 mg/kg) treated during the induction period remarkably reduced the nerve injury-induced phosphorylation of NMDA receptor NR1 subunit (pNR1) in the spinal dorsal horn. Results of this study suggest that extracts from CR and CT may be useful to alleviate neuropathic pain.

Preemptive application of QX-314 attenuates trigeminal neuropathic mechanical allodynia in rats

  • Yoon, Jeong-Ho;Son, Jo-Young;Kim, Min-Ji;Kang, Song-Hee;Ju, Jin-Sook;Bae, Yong-Chul;Ahn, Dong-Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.331-341
    • /
    • 2018
  • The aim of the present study was to examine the effects of preemptive analgesia on the development of trigeminal neuropathic pain. For this purpose, mechanical allodynia was evaluated in male Sprague-Dawley rats using chronic constriction injury of the infraorbital nerve (CCI-ION) and perineural application of 2% QX-314 to the infraorbital nerve. CCI-ION produced severe mechanical allodynia, which was maintained until postoperative day (POD) 30. An immediate single application of 2% QX-314 to the infraorbital nerve following CCI-ION significantly reduced neuropathic mechanical allodynia. Immediate double application of QX-314 produced a greater attenuation of mechanical allodynia than a single application of QX-314. Immediate double application of 2% QX-314 reduced the CCI-ION-induced upregulation of GFAP and p-p38 expression in the trigeminal ganglion. The upregulated p-p38 expression was co-localized with NeuN, a neuronal cell marker. We also investigated the role of voltage-gated sodium channels (Navs) in the antinociception produced by preemptive application of QX-314 through analysis of the changes in Nav expression in the trigeminal ganglion following CCI-ION. Preemptive application of QX-314 significantly reduced the upregulation of Nav1.3, 1.7, and 1.9 produced by CCI-ION. These results suggest that long-lasting blockade of the transmission of pain signaling inhibits the development of neuropathic pain through the regulation of Nav isoform expression in the trigeminal ganglion. Importantly, these results provide a potential preemptive therapeutic strategy for the treatment of neuropathic pain after nerve injury.

GS-KG9 ameliorates diabetic neuropathic pain induced by streptozotocin in rats

  • Lee, Jee Youn;Choi, Hae Young;Park, Chan Sol;Pyo, Mi Kyung;Yune, Tae Young;Kim, Go Woon;Chung, Sung Hyun
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.58-67
    • /
    • 2019
  • Background: Diabetic neuropathy is one of the most devastating ailments of the peripheral nervous system. Neuropathic pain develops in ~30% of diabetics. Here, we examined the suppressive effect of GS-KG9 on neuropathic pain induced by streptozotocin (STZ). Methods: Hyperglycemia was induced by intraperitoneal injection of STZ. Rats showing blood glucose level > 250 mg/dL were divided into five groups, and treatment groups received oral saline containing GS-KG9 (50 mg/kg, 150 mg/kg, or 300 mg/kg) twice daily for 4 wk. The effects of GS-KG9 on pain behavior, microglia activation in the lumbar spinal cord and ventral posterolateral (VPL) nucleus of the thalamus, and c-Fos expression in the dorsal horn of the lumbar spinal cord were examined. Results: The development of neuropathic pain began at Day 5 and peaked at Week 4 after STZ injection. Mechanical and thermal pains were both significantly attenuated in GS-KG9-treated groups from 10 d after STZ injection as compared to those in the STZ control. GS-KG9 also repressed microglia activation in L4 dorsal horn and VPL region of the thalamus. In addition, increase in c-Fos-positive cells within L4 dorsal horn lamina I and II of the STZ control group was markedly alleviated by GS-KG9. Conclusion: These results suggest that GS-KG9 effectively relieves STZ-induced neuropathic pain by inhibiting microglial activation in the spinal cord dorsal horn and VPL region of the thalamus.

Role of Dehydrocorybulbine in Neuropathic Pain After Spinal Cord Injury Mediated by P2X4 Receptor

  • Wang, Zhongwei;Mei, Wei;Wang, Qingde;Guo, Rundong;Liu, Peilin;Wang, Yuqiang;Zhang, Zijuan;Wang, Limin
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.143-150
    • /
    • 2019
  • Chronic neuropathic pain is one of the primary causes of disability subsequent to spinal cord injury. Patients experiencing neuropathic pain after spinal cord injury suffer from poor quality of life, so complementary therapy is seriously needed. Dehydrocorybulbine is an alkaloid extracted from Corydalis yanhusuo. It effectively alleviates neuropathic pain. In the present study, we explored the effect of dehydrocorybulbine on neuropathic pain after spinal cord injury and delineated its possible mechanism. Experiments were performed in rats to evaluate the contribution of dehydrocorybulbine to P2X4 signaling in the modulation of pain-related behaviors and the levels of pronociceptive interleukins and proteins after spinal cord injury. In a rat contusion injury model, we confirmed that chronic neuropathic pain is present on day 7 after spinal cord injury and P2X4R expression is exacerbated after spinal cord injury. We also found that administration of dehydrocorybulbine by tail vein injection relieved pain behaviors in rat contusion injury models without affecting motor functions. The elevation in the levels of pronociceptive interleukins ($IL-1{\beta}$, IL-18, MMP-9) after spinal cord injury was mitigated by dehydrocorybulbine. Dehydrocorybulbine significantly mitigated the upregulation of P2X4 receptor and reduced ATP-evoked intracellular $Ca^{2+}$ concentration. Both P2XR and dopamine receptor2 agonists antagonized dehydrocorybulbine's antinociceptive effects. In conclusion, we propose that dehydrocorybulbine produces antinociceptive effects in spinal cord injury models by inhibiting P2X4R.

Antinociceptive effects of oleuropein in experimental models of neuropathic pain in male rats

  • Chen, Huayong;Ma, Dandan;Zhang, Huapeng;Tang, Yanhong;Wang, Jun;Li, Renhu;Wen, Wen;Zhang, Yi
    • The Korean Journal of Pain
    • /
    • v.34 no.1
    • /
    • pp.35-46
    • /
    • 2021
  • Background: The present investigation explored the therapeutic actions of oleuropein along with the possible signaling pathway involved in attenuating neuropathic pain in chronic constriction injury (CCI) and vincristine-induced neuropathic pain in male rats. Methods: Four loose ligatures were placed around the sciatic nerve to induce CCI, and vincristine (50 ㎍/kg) was injected for 10 days to develop neuropathic pain. The development of cold allodynia, mechanical allodynia, and mechanical hyperalgesia was assessed using different pain-related behavioral tests. The levels of H2S, cystathionine-γ-lyase (CSE), cystathionine-β-synthase (CBS), orexin, and nuclear factor erythroid-2-related factor 2 (Nrf2) were measured in the sciatic nerve. Results: Treatment with oleuropein for 14 days led to significant amelioration of behavioral manifestations of neuropathic pain in two pain models. Moreover, oleuropein restored both CCI and vincristine-induced decreases in H2S, CSE, CBS, orexin, and Nrf2 levels. Co-administration of suvorexant, an orexin receptor antagonist, significantly counteracted the pain-attenuating actions of oleuropein and Nrf2 levels without modulating H2S, CSE and CBS. Conclusions: Oleuropein has therapeutic potential to attenuate the pain manifestations in CCI and vincristine-induced neuropathic pain, possibly by restoring the CSE, CBS, and H2S, which may subsequently increase the expression of orexin and Nrf2 to ameliorate behavioral manifestations of pain.

SKF96365 impedes spinal glutamatergic transmission-mediated neuropathic allodynia

  • Qiru Wang;Yang Zhang;Qiong Du;Xinjie Zhao;Wei Wang;Qing Zhai;Ming Xiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.1
    • /
    • pp.39-48
    • /
    • 2023
  • Spinal nerve injury causes mechanical allodynia and structural imbalance of neurotransmission, which were typically associated with calcium overload. Storeoperated calcium entry (SOCE) is considered crucial elements-mediating intracellular calcium homeostasis, ion channel activity, and synaptic plasticity. However, the underlying mechanism of SOCE in mediating neuronal transmitter release and synaptic transmission remains ambiguous in neuropathic pain. Neuropathic rats were operated by spinal nerve ligations. Neurotransmissions were assessed by whole-cell recording in substantia gelatinosa. Immunofluorescence staining of STIM1 with neuronal and glial biomarkers in the spinal dorsal horn. The endoplasmic reticulum stress level was estimated from qRT-PCR. Intrathecal injection of SOCE antagonist SKF96365 dose-dependently alleviated mechanical allodynia in ipsilateral hind paws of neuropathic rats with ED50 of 18 ㎍. Immunofluorescence staining demonstrated that STIM1 was specifically and significantly expressed in neurons but not astrocytes and microglia in the spinal dorsal horn. Bath application of SKF96365 inhibited enhanced miniature excitatory postsynaptic currents in a dosage-dependent manner without affecting miniature inhibitory postsynaptic currents. Mal-adaption of SOCE was commonly related to endoplasmic reticulum (ER) stress in the central nervous system. SKF96365 markedly suppressed ER stress levels by alleviating mRNA expression of C/ EBP homologous protein and heat shock protein 70 in neuropathic rats. Our findings suggested that nerve injury might promote SOCE-mediated calcium levels, resulting in long-term imbalance of spinal synaptic transmission and behavioral sensitization, SKF96365 produces antinociception by alleviating glutamatergic transmission and ER stress. This work demonstrated the involvement of SOCE in neuropathic pain, implying that SOCE might be a potential target for pain management.