• 제목/요약/키워드: Neurons

검색결과 2,034건 처리시간 0.03초

Effect of ${\gamma}-ray$ Irradiation on the Activities of Monoamine Oxidase in Rat Brain and Liver (방사선 조사가 쥐의 뇌와 간의 Monoamine Oxidase 활성도에 미치는 영향)

  • Kim, Joo-Young;Choi, Myung-Sun;Choi, Myung-Un
    • Radiation Oncology Journal
    • /
    • 제11권2호
    • /
    • pp.205-217
    • /
    • 1993
  • In order to evalute the effects of radiation on mammalian neuronal system, we have examined the effect of gamma-ray radiation on the monoamine oxidase (MAO) activity in monoaminergic neurons. Following the whole body irradiation, MAO activity in the rat brain was measured as well as in the liver for the comparative studies between the neuronal and nonneuronal system. The effects of some radiation protectors and sensitizers were also examined in addition to the $O_2$ effect. The results can be summarized as follows. 1) The MAO activity of rat brain was minimally affected by the radiation dose up to 1,700 cGy Radiation dose above 2,500 cGy inhibited the brain MAO activity by no less than $l0\%.$ MAO-A form was found to be particularly sensitive to radiation. The liver MAO was somewhat inhibited (by about $5\%$) but hardly dependent on the dose of radiation. 2) The inhibitory effect on the brain was initiated immediately by the radiation dose of 2,500 cGy. On the contrary, for the liver, the inhibitory effect became apparent only 2 days after irradiation. 3) Two days after a dose of 2,500 cGy, Vmax and Km of the brain mitochondrial MAO decreased. For liver, Vmax decreased while Km increased, which indicates the kinetic patterns for the neuronal and nonneruronal systems are not affected similarly by radiation. 4) The effect of several known radiation protectors and sensitizers on MAO activity was tested ut no definite results were obtained. The level of -SH group increased in some degree upon radiation but not by the compounds. 5) MAO activity was not affected by $O_2$ concentration, while an elevated level of lipid peroxidase was found under the same condition. The results described here indicate that characteristics of MAO, one of the most important central nervous system enzymes, are liable to radiation, which is partially differentiated from the liver MAO. Also indicated are that the -SH groups are hardly related to the effect of radiation but the production of the lipid peroxide seems to be somewhat correlated to the effect of radiation.

  • PDF

A Retrospective Study on the Correlation between Fasting Blood Sugar and Motor Evoked Potentials : Comparison between Central and Peripheral Motor Nerve (공복혈당수치와 운동유발전위의 상관관계에 대한 후향적 분석 : 중추운동신경과 말초운동신경의 비교)

  • Na, Byung-Jo;Park, Seong-Uk;Jung, Woo-Sang;Moon, Sang-Kwan;Park, Jung-Mi;Ko, Chang-Nam;Cho, Ki-Ho;Kim, Young-Suk;Bae, Hyung-Sup;Hong, Jin-Woo
    • The Journal of Internal Korean Medicine
    • /
    • 제28권3호
    • /
    • pp.434-441
    • /
    • 2007
  • Objectives : Peripheral neurodegeneration occurs in diabetes mellitus (DM), both sensory and motor nerve. but we don't know exactly if DM affects central nerve pathway for all studies. Electrophysiologic study is one of the most important diagnostic tools for diabetic neuropathy. Electroneurography and electromyography are usually used. but evoked potentials (EP) is more sensitive to small nerve fiber damages and useful for central nerve evaluation in addition to peripheral nerves. Most diabetic neuropathy studies by EP have been performed with somatosensory evoked potentials (SSEP). In contrast, the objective of this study is to investigate if DM targets central motor neurons by assessing the relation between fasting blood sugar (FBS) and motor evoked potentials (MEP) latency. Methods : We inspected the medical records of 34 patients who had MEP tests during admitting days. The latency from cervical portion to abductor pollicis brevis was used as peripheral motor conduction time (PMCT). and the latency from vertex to cervical portion was used as central motor conduction time (CMCT). Then, they were correlated to FBS using correlation analysis. Results : There was a significant linear relation between FBS and PMCT (Pearson's correlation coefficient r=0.487, p<0.01), but a poor linear relation between FBS and CMCT (Pearson's correlation coefficient r=-0.l97. p>0.05). Conclusions : This study suggests that prolonged latencies of MEP in DM may be due to peripheral neuropathy rather than dysfunction of central motor pathway. therefore the clinical use of MEP to diabetic neuropathy has to be divided segmentally.

  • PDF

Anti-Oxidative and Neuroprotective Effects of Rhei Rhizoma on BV-2 Microglia Cells and Hippocampal Neurons (대황(大黃)의 항산화와 신경세포손상 보호효능에 대한 연구)

  • Myung, Sung-Ha;Kim, Youn-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • 제19권3호
    • /
    • pp.647-655
    • /
    • 2005
  • This study demonstrated anti-oxidative and neuroprotective effects of Rhei Rhizoma. Anti-oxidative effects were studied on BV-2 microglia cells damaged by $H_2O_2$ and nitric oxide. Neuroprotective effects were studied by using oxygen/glucose deprivation of the organotypic hippocampal slice cultures. The results obtained are as follows; The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of neuronal cell death area and cell death area percentages in CA1 region of ischemic damaged hippocampus cultures during whole 48 hours of the experiment. The group treated with 50 mg/ml of Puerariae Radix demonstrated decreases of neuronal cell death area and cell death area percentages in CA1 region, but these were not significant statistically. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of neuronal cell death area and cell death area percentages in dentate gyrus of ischemic damaged hippocampus cultures during whole 48 hours of the experiment. The group treated with 50 mg/ml of Puerariae Radix demonstrated decreases of neuronal cell death area and cell death area percentages in dentate gyrus, but these were not significant statistically. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of TUNEL-positive cells in both CA1 region and dentate gyrus of ischemic damaged hippocampus cultures. The group treated with 50 mg/ml of Puerariae Radix demonstrated significant decrease of TUNEL-positive cells in CA1 region, but not in dentate gyrus of ischemic damaged hippocampus. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of LDH concentrations in culture media of ischemic damaged hippocampus cultures. The group treated with 50 mg/ml of Puerariae Radix demonstrated decrease of LDH concentrations in culture media, but it was not significant statistically. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant increases of cell viabilities of BV-2 microglia cells damaged by $H_2O_2$. The group treated with 50 mg/ml of Puerariae Radix demonstrated increase of cell viability of BV-2 microglia cells, but it was not significant statistically. The group treated with 0.5 mg/ml of Puerariae Radix revealed significant increase of cell viability of BV-2 microglia cells damaged by nitric oxide. The groups treated with 5 and 50 mg/ml of Puerariae Radix demonstrated increases of cell viabilities of BV-2 microglia cells, but these were not significant statistically. These results suggested that Puerariae Radix revealed neuroprotective effects through the control effect of apoptosis and oxidative damages.

Retinopathy Induced by Zinc Oxide Nanoparticles in Rats Assessed by Micro-computed Tomography and Histopathology

  • Kim, Young Hee;Kwak, Kyung A;Kim, Tae Sung;Seok, Ji Hyeon;Roh, Hang Sik;Lee, Jong-Kwon;Jeong, Jayoung;Meang, Eun Ho;Hong, Jeong-sup;Lee, Yun Seok;Kang, Jin Seok
    • Toxicological Research
    • /
    • 제31권2호
    • /
    • pp.157-163
    • /
    • 2015
  • Nanotechnology has advanced at an extremely rapid pace over the past several years in numerous fields of research. However, the uptake of nanoparticles (NPs) into the body after administration through various routes may pose a risk to human health. In this study, we investigated the potential ocular toxicity of 20-nm, negatively- charged zinc oxide (ZnO) NPs in rats using micro-computed tomography (micro-CT) and histopathological assessment. Animals were divided into four groups as control group, ZnO NPs treatment group (500 mg/kg/day), control recovery group, and ZnO NPs treatment and recovery group. Ocular samples were prepared from animals treated for 90 days (10 males and 10 females, respectively) and from recovery animals (5 males and 5 females, respectively) sacrificed at 14 days after final treatment and were compared to age-matched control animals. Micro-CT analyses represented the deposition and distribution of foreign materials in the eyes of rats treated with ZnO NPs, whereas control animals showed no such findings. X-ray fluorescence spectrometry and energy dispersive spectrometry showed the intraocular foreign materials as zinc in treated rats, whereas control animals showed no zinc signal. Histopathological examination revealed the retinopathy in the eyes of rats treated with ZnO NPs. Neuronal nuclei expression was decreased in neurons of the ganglion cell layer of animals treated with ZnO NPs compared to the control group. Taken together, treatment with 20-nm, negatively-charged ZnO NPs increased retinopathy, associated with local distribution of them in ocular lesions.

Immunohistochemical study on distribution of progesterone target cells by 17β-Estradiol I. Distribution of progesterone target cells by autoradiography (17β-Estradiol이 progesterone target cell 분포에 미치는 영향에 대한 면역조직화학적 연구 I. 방사선자기법을 이용한 target cell의 분포에 대하여)

  • Kwak, Soo-dong;Goh, Pil-ok;Kim, Chong-sun
    • Korean Journal of Veterinary Research
    • /
    • 제36권1호
    • /
    • pp.93-99
    • /
    • 1996
  • This study was designed to investigate the effect of estrogen(Est) on the progestcrone(Prog) target cells by autoradiography. The spayed 16 mice(ICR, approximately 18~25g) were randomly alloted into 3 groups. $^3H$-Prog-treated group were injected with $40{\mu}Ci$ of $^3H$-Prog/mouse/day for 1 day, Est + $^3H$-Prog-treated group with $20{\mu}Ci$ of $17{\beta}$-Est/mouse/day for 3 days and then with $40{\mu}Ci$ of $^3H$-Prog/mouse at 4th day, and Est+$^3H$-thymidine(TdR)-treated group with $20{\mu}g$ of $17{\beta}$-Est/mouse/day for 3 days and then $80{\mu}Ci$ of $^3H$-TdR/mouse at 4th days. 1. Mice uteri of both Est+$^3H$-Prog-treated group and Est+$^3H$-TdR-treated group were hypemophied in gross finding and the endometrium and myometrium were thickened in microscopic findings. These findings were confirmed that Est enlarged the uteri of mice. 2. Cryo-preparations of mice organs were processed for autoradiography using Kodak NTB-2 emulsion following Kodak D-19 developer and hematoxylin counterstain. In each group, the number values of silver grain distribution appeared to be higher in the $^3H$-Prog-treated group than in the Est+$^3H$-Prog-treated group. It was considered that Est and Prog inhibit each other in action. 3. In both $^3H$-Prog-treated group and Est+$^3H$-Prog-treated group, the uteri have highest distribution rates of silver grains than in other organs, and the cerebral neurons, hepatocytes, bronchiolar epithelial cells and splenic reticular cells also contained some silver grains. 4. The orders of the cell types with more number of silver grains in the uteri were stromal cells, glandular epithelial cells, luminal surface cells and muscular cells and also were as above orders in distribution of proliferating cell type by $^3H$-TdR.

  • PDF

Uniform Posture Map Algorithm to Generate Natural Motion Transitions in Real-time (자연스러운 실시간 동작 전이 생성을 위한 균등 자세 지도 알고리즘)

  • Lee, Bum-Ro;Chung, Chin-Hyun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • 제7권6호
    • /
    • pp.549-558
    • /
    • 2001
  • It is important to reuse existing motion capture data for reduction of the animation producing cost as well as efficiency of producing process. Because its motion curve has no control point, however, it is difficult to modify the captured data interactively. The motion transition is a useful method to reuse the existing motion data. It generates a seamless intermediate motion with two short motion sequences. In this paper, Uniform Posture Map (UPM) algorithm is proposed to perform the motion transition. Since the UPM is organized through quantization of various postures with an unsupervised learning algorithm, it places the output neurons with similar posture in adjacent position. Using this property, an intermediate posture of two active postures is generated; the generating posture is used as a key-frame to make an interpolating motion. The UPM algorithm needs much less computational cost, in comparison with other motion transition algorithms. It provides a control parameter; an animator could control the motion simply by adjusting the parameter. These merits of the UPM make an animator to produce the animation interactively. The UPM algorithm prevents from generating an unreal posture in learning phase. It not only makes more realistic motion curves, but also contributes to making more natural motions. The motion transition algorithm proposed in this paper could be applied to the various fields such as real time 3D games, virtual reality applications, web 3D applications, and etc.

  • PDF

Immuno-Electron Microscopic Studies on the Localization of Serotonin and Somatostatin in the Optic Lobes of Cephalopods (Todarodes pacificus and Octopus minor) Inhabiting the Korean Waters (한국 연근해산 두족류 (Todarodes pacificus and Octopus minor) 시엽 (Optic lobe)내 Serotonin 및 Somatostatin의 분포에 관한 면역전자현미경적 연구)

  • Chang, Nam-Sub;Han, Jong-Min;Kim, Sang-Won;Lee, Kwang-Ju;Hwang, Sun-Jong;Lee, Jung-Chan
    • Applied Microscopy
    • /
    • 제32권3호
    • /
    • pp.247-255
    • /
    • 2002
  • In this study, we carried out immunostaining and immunogold labeling with antibodies to serotonin and somatostatin to examine the characteristics and functions of the neurons that secrete neurotransmitters in optic lobes of Todarodes pacificus and Octopus minor. As a result of immunostaining with anti-somatostatin, the nerve cells of Todarodes pacificus reacted as similar to the anti-serotonin, but in Octopus minor, only large cells in the outer granule cell layer reacted positively. In the immunogold labeling with anti-serotonin, the nerve cells in the inner grande cell layer and medulla of Todarodes pacificus reacted strongly, 30 gold particles being labeled per $0.5{\mu}m^2$ of the cytoplasm. However, in Octopus minor, only 17 gold particles were labeled, which stated a weak reaction. On the other hand, in the anti-somatostatin case, the nerve cells in the outer and inner granule cell layers and medulla of Todarodes pacificus showed strong reaction, 30 gold particles being labeled per $0.5{\mu}m^2$ of the cytoplasm while the nerve cells in the outer granule cell layer of Octopus minor reacted weakly, about 3 gold particles being labeled per the equivalent area. As a result of immunostaining and immunogold labeling with two types of antibodies to each part of the optic lobes, we found that the reactive nerve cells were distributed differently in the two species. In particular, the degree of reactivity to the immunostaining and immunogold labeling appeared stronger in Todarodes pacificus than in Octopus minor.

DNA Breakage by Salvianolic acid B in the Presence of Cu (II) (구리이온(II)이 존재할 때 Salvianolic acid B에 의한 DNA 절단)

  • Lee, Pyeongjae;Moon, Cheol;Choi, Yoon Seon;Son, Hyun Kyu
    • Korean Journal of Clinical Laboratory Science
    • /
    • 제50권2호
    • /
    • pp.205-210
    • /
    • 2018
  • Salvianolic acid B, which is a compound in the Salvia miltiorrhiza, has diverse biological activities, In particular, the antioxidative effects were reported to be involved in the protection of hepatocytes, neurons, and various cell types. On the other hand, some phenolic compounds, such as ferulic acid, which is regarded as an antioxidant, plays a pro-oxidative role in the specific transitional metal environment, which could explain the anticancer effect. This study examined the pro-oxidative effects of salvianolic acid B in the presence of $Cu^{2+}$. Treatment with both salvianolic acid B and $Cu^{2+}$ induced the transition of supercoiled DNA to the open circular or linear form but not in the sole salvianolic acid B or $Cu^{2+}$ treatments. Salvianolic acid B reduced the $Cu^{2+}$ to $Cu^+$ using neocuproine, a $Cu^+$ specific chelator. In addition, catalase, an enzyme that breaks down the $H_2O_2$ to water and molecular oxygen, inhibited the DNA breakage. $H_2O_2$, a reactive oxygen species, has detrimental effects on biological molecules, particularly DNA. Overall, the reduction of $Cu^{2+}$ by salvianolic acid B could lead to the production of $H_2O_2$ followed by DNA breakage. These results suggest that the pro-oxidative effects could be the one of the anti-cancer mechanisms of salvianolic acid B, which remains to be explained.

Role of Nox4 in Neuronal Differentiation of Mouse Subventricular Zone Neural Stem Cells (쥐의 뇌실 하 영역(SVZ) 신경 줄기 세포의 신경 세포로의 분화 과정에서 Nox4의 역할)

  • Park, Ki-Youb;Na, Yerin;Kim, Man Su
    • Journal of Life Science
    • /
    • 제26권1호
    • /
    • pp.8-16
    • /
    • 2016
  • Reactive oxygen species (ROS), at appropriate concentrations, mediate various normal cellular functions, including defense against pathogens, signal transduction, cellular growth, and gene expression. A recent study demonstrated that ROS and ROS-generating NADPH oxidase (Nox) are important in self-renewal and neuronal differentiation of subventricular zone (SVZ) neural stem cells in adult mouse brains. In this study, we found that endogenous ROS were detected in SVZ neural stem cells cultured from postnatal mouse brains. Nox4 was predominantly expressed in cultured cells, while the levels of the Nox1 and Nox2 transcripts were very low. In addition, the Nox4 gene was highly upregulated (by up to 10-fold) during neuronal differentiation. Immunocytochemical analysis detected the Nox4 protein mainly in neurons positive for the neuronal specific tubulin Tuj1. After differentiation, endogenous ROS were detected exclusively in neuron-like cells with processes. In addition, perturbation of the cellular redox state with N-acetyl cysteine, a ROS scavenger, during neuronal differentiation greatly inhibited neurogenesis. Lastly, knockdown of Nox4 using short hairpin RNA decreased neurogenesis. These findings suggest that Nox4 may be a major ROS-generating enzyme in postnatal SVZ neural stem cells, and Nox4-mediated ROS generation may be important in their neuronal differentiation.

The most appropriate antimitotic treatment of Ara-C in Schwann cell-enriched culture from dorsal root ganglia of new born rat

  • Kim, Soung-Min;Jahng, Jeong-Won;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제32권1호
    • /
    • pp.42-51
    • /
    • 2006
  • Schwann cell, one of important components of peripheral nervous system, interact with neurons to mutually support the growth and replication of embryonal nerves and to maintain the different functions of adult nerves. The Ara-C, known as an antimitotic agent, have been used to have high effectiveness in eliminating fibroblasts during Schwann cell culture period. This enrichment effect is also known to be cummulative with each successive pulse of Ara-C applied and is due to a progressive loss of fibroblasts. But the cytotoxicity by Ara-C is also cummulative and noticeable over the period. To determine the most effective application time and interval of Ara-C in the Schwann cell culture, we observed the Schwann cell purity and density with the Ara-C treatment in plain and three-dimensional culture from dorsal root ganglion of new born rat. By culturing dispersed dorsal root ganglia, we can repeatedly generate homogenous Schwann cells, and cellular morphology and cell count with mean percentages were evaluated in the plain culture dishes and in the immunostainings of S-100 and GFAP in the three-dimensional culture. The Ara-C treated cultures showed a higher Schwann cell percentage (31.0%${\pm}$8.09% in P4 group to 65.5%${\pm}$24.08% in P2 group), compared with that obtained in the abscence of Ara-C (17.6%${\pm}$6.03%) in the plain culture after 2 weeks. And in the three-dimensional culture, S-100 positive cells increased to 56.22%${\pm}$0.67% and GFAP positive cells to 66.46%${\pm}$1.83% in G2 group (p<0.05), higher yield than other groups with Ara-C application. Therefore, we concluded that the Ara-C treatment is effective for the proliferation of Schwann cells contrast to the fibroblasts in vitro culture, and the first application after 24 hours from cell harvesting and subsequent 2 pulse treatment (P2 group in plain culture and G2 group in three-dimensional culture) was more effective than other application protocols.