• 제목/요약/키워드: Neuronal nitric oxide synthase

검색결과 121건 처리시간 0.024초

Neuroprotective effects of paeoniflorin against neuronal oxidative stress and neuroinflammation induced by lipopolysaccharide in mice

  • Meng, Hwi Wen;Lee, Ah Young;Kim, Hyun Young;Cho, Eun Ju;Kim, Ji Hyun
    • Journal of Applied Biological Chemistry
    • /
    • 제65권1호
    • /
    • pp.23-31
    • /
    • 2022
  • Oxidative stress and neuroinflammation play important roles in the pathogenesis of Alzheimer's disease (AD). This study investigated the protective effects of paeoniflorin (PF) against neuronal oxidative stress and neuroinflammation in lipopolysaccharide (LPS)-induced mice. The brains of LPS-injected control group showed significantly increased neuroinflammation by activating the nuclear factor kappa B (NF-κB) pathway and increasing inflammatory mediators. However, administration of PF significantly attenuated oxidative stress by inhibiting lipid peroxidation, nitric oxide levels, and reactive oxygen species production in the brain; PF at doses of 5 and 10 mg/kg/day downregulated the expression of NF-κB pathway-related proteins and significantly decreased inflammatory mediators including inducible nitric oxide synthase and cyclooxygenase-2. Moreover, the levels of brain-derived neurotrophic factor and its receptor, tropomycin receptor kinase B, were significantly increased in PF-treated mice. Furthermore, acetylcholinesterase activity and the ration of B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X were significantly reduced by PF in the brains of LPS-induced mice, resulting in the inhibition of cholinergic dysfunction and neuronal apoptosis. Thus, we can conclude that administration of PF to mice prevents the development of LPS-induced AD pathology through the inhibition of neuronal oxidative stress and neuroinflammation, suggesting that PF has a therapeutic potential for AD.

Neuroprotective Effect of N-nitro-L-arginine Methylester Pretreatment on the Early Stage of Kainic Acid Induced Neuronal Degeneration in the Rat Brain

  • Koh, Jun-Seok;Kim, Gook-Ki;Lim, Young-Jin;Rhee, Bong-Arm;Kim, Tae-Sung
    • Journal of Korean Neurosurgical Society
    • /
    • 제38권4호
    • /
    • pp.287-292
    • /
    • 2005
  • Objective : Kainic acid[KA] enhances the expression of nitric oxide synthase, increases nitric oxide[NO], and thus evokes epileptic convulsion, which results in neuronal damage in the rat brain. NO may stimulate cyclooxygenase type-2 [COX-2] activity, thus producing seizure and neuronal injury, but it has also been reported that KA-induced seizure and neurodegeneration are aggravated on decreasing the COX-2 level. This study was undertaken to investigate whether the suppression of NO using the NOS inhibitor, N-nitro-L-arginine methyl ester[L-NAME], suppresses or enhances the activity of COX-2. Methods : Silver impregnation and COX-2 immunohistochemical staining were used to localize related pathophysiological processes in the rat forebrain following KA-induced epileptic convulsion and L-NAME pretreatment. Post-injection survival of the rat was 1, 2, 3days and 2months, respectively. Results : After the systemic administration of KA in rats, neurodegeneration increased with time in the cornu ammonis [CA] 3, CA 1 and amygdala, as confirmed by silver impregnation. On pretreating L-NAME, KA-induced neuronal degeneration decreased. COX-2 enzyme activities increased after KA injection in the dentate gyrus, CA 3, CA 1, amygdala and pyriform cortex, as determined by COX-2 staining. L-NAME pretreatment prior to KA-injection, caused COX-2 activities to increase compared with KA- injection only group by 1day and 2days survival time point. Conclusion : These results suggest that L-NAME has a neuroprotective effect on KA-induced neuronal damage, especially during the early stage of neurodegeneration.

Role of Exogenous Nitric Oxide Generated through Microwave Plasma Activate the Oxidative Signaling Components in Differentiation of Myoblast cells into Myotube

  • Kumar, Naresh;Shaw, Priyanka;Attri, Pankaj;Uhm, Han Sup;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.158-158
    • /
    • 2015
  • Myoblast are myogenic precursors that proliferate, activate, and differentiate on muscle injury to sustain the regenerative capacity of skeletal muscle; The neuronal isoform of nitric oxide synthase (nNOS, termed also NOS-I) is expressed in normal adult skeletal muscle, suggesting important functions for Nitric oxide (NO) in muscle biology1,2,3. However, the expression and subcellular localization of NO in muscle development and myoblast differentiation are largely unknown. In this study, we examined effects of the nitric oxide generated by a microwave plasma torch, on proliferation/differentiation of rat myoblastic L6 cells. Experimental data pertaining to nitric oxide production are presented in terms of the oxygen input in units of cubic centimetres per minute. The various levels of nitric oxide are observed depending on the flow rate of nitrogen gas, the ratio of oxygen gas, and the microwave power4. In order to evaluate the potential of nitric oxide as an activator of cell differentiation, we applied nitric oxide generated from the microwave plasma torch to L6 skeletal muscles. Differentiation of L6 cells into myotubes was significantly enhanced the differentiation after nitric oxide treatment. Nitric oxide treatment also increase the expression of myogenesis marker proteins and mRNA level, such as myogenin and myosin heavy chain (MHC), as well as cyclic guanosine monophosphate (cGMP), However during the myotube differentiation we found that NO activate oxidative stress signaling erks expression. Therefore, these results establish a role of NO and cGMP in regulating myoblast differentiation and elucidate their mechanism of action, providing a direct link with oxidative stress signalling, which is a key player in myogenesis. Based on these findings, nitric oxide generated by plasma can be used as a possible activator of cell differentiation and tissue regeneration.

  • PDF

Immunocytochemical Localization of Nitric Oxide Synthase-containing Neurons in Mouse and Rabbit Visual Cortex and Co-Localization with Calcium-binding Proteins

  • Lee, Jee-Eun;Jeon, Chang-Jin
    • Molecules and Cells
    • /
    • 제19권3호
    • /
    • pp.408-417
    • /
    • 2005
  • Nitric oxide (NO) occurs in various types of cells in the central nervous system. We studied the distribution and morphology of neuronal nitric oxide synthase (NOS)-containing neurons in the visual cortex of mouse and rabbit with antibody immunocytochemistry. We also compared this labeling to that of calbindin D28K, calretinin, and parvalbumin. Staining for NOS was seen both in the specific layers and in selective cell types. The densest concentration of intense anti-NOS immunoreactive (IR) neurons was found in layer VI, while the weak anti-NOS-IR neurons were found in layer II/III in both animals. The NOS-IR neurons varied in morphology. The large majority of NOS-IR neurons were round or oval cells with many dendrites coursing in all directions. Two-color immunofluorescence revealed that only 16.7% of the NOS-IR cells were double-labeled with calbindin D28K in the mouse visual cortex, while more than half (51.7%) of the NOS-IR cells were double-labeled with calretinin and 25.0% of the NOS-IR cells were double-labeled with parvalbumin in mouse. By contrast, 92.4% of the NOS-IR neurons expressed calbindin D28K while only 2.5% of the NOS-IR neurons expressed calretinin in the rabbit visual cortex. In contrast with the mouse, none of the NOS-IR cells in the rabbit visual cortex were double-labeled with parvalbumin. The results indicate that neurons in the visual cortex of both animals express NOS in specific layers and cell types, which do not correlate with the expression of calbindin D28K, calretinin or parvalbumin between the two animals.

Involvement of Nitric Oxide in UVB-induced pigmentation

  • Horikoshi, Toshio;Sasaki, Minoru;Nakahara, Michio;Uchiwa, Hideyo;Miyachi, Yoshiki
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.205-208
    • /
    • 2002
  • Nitric oxide (NO) is a newly described transmitter involved with cell to cell communication that is generated in biologic tissues by specific types of nitric oxide synthase (NOS), which metabolize L-arginine and molecular oxygen to citrulline and nitric oxide. In the skin. NO has been reported to play an important role in such diseases as psoriasis, atopic dermatitis, and contact dermatitis, as well as act as an important modulator in UVB-induced erythema. Ultraviolet B irradiation to the skin evokes an increase in NO production in the epidermis through two pathways; induction of inducible NOS, mediated by inflammatory cytokines, and elevation of constitutive neuronal NOS activity. In a cell culture system, it has been demonstrated that NO functions as a melanogen after being produced in keratinocytes in response to UVB-irradiation. NO-stimulated melanogenesis in melanocytes is mediated by the cGMP/PKG pathway. In this study, up-regulation of tyrosinase gene expression by NO-stimulation and the involvement of NO in UVB-induced pigmentation were examined. In NO-induced melanogenesis, protein synthesis and tyrosinase activity increased along with an up-regulation of tyrosinase gene expression. In an animal model, UVB-induced pigmentation in skin was suppressed by sequential daily treatments with a specific inhibitor of NOS. Thus, NO plays an important role in UVB-induced pigmentation, where its function as a melanogen is considered to be one of the mechanisms. Together with its role in the development of erythema, NO contributes to the total protective response of skin against UVB-irradiation.

  • PDF

m2 Muscarinic Receptors Stimulate Neuronal Nitric Oxide Synthase

  • Lee, Seok-Yong;Park, Sun-Hye;Cho, Tai-Soon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.208-208
    • /
    • 1996
  • In this work we investigated coupling of the m2 and m4 subtypes of muscarinic acetylcholine receptors expressed in chinese hamster ovary (CHO) cells to activation of neuronal nitric oxide synthase (nNOS). Stimulation of guanylate cyclase activity in detector neuroblastoma cells was used as an index of generation of nitric oxide (NO) in CHO cells. The agonist carbachol induced marked time and concentration-dependent enhancement of the activity of nNOS at m2 receptors. In sharp contrast, the response in CHO cells transfected with the m4 receptor gene was similar in magnitude to that observed in non-transfected cells, suggesting lack of significant coupling of m4 muscarinic receptors to NO signaling. This novel observation of functional divergence of the two muscarinic receptor subtypes at the level of activation of nNOS is quite intriguing, in light of the currently accepted dogma that they belong to the same functional class. This functional selectivity was not due to differential effects on intracellular Ca$\^$2+/ concentration, since activation of both subtypes of muscarinic receptors produced a comparable, albeit quite small, Ca$\^$2+/ signal. Taken together, our present data strongly suggest that the generally assumed functional equivalence of m2 and m4 muscarinic receptors should be carefully reexamined. These data also suggest the presence of alternate mechanisms of activation of nNOS, which might be operative in the absence of large changes in the concentration of cellular Ca$\^$2+/. The latter mechanisms are expected to be activated by m2, but not m4 muscarinic receptors. Both sets of findings are quits important in regards to refining the functional classification of muscarinic receptor subtypes and the cellular mechanisms of activation of NOS.

  • PDF

히르쉬스프룽병의 병변부위에서 nNOS 발현 (The Expression of nNOS in Hirschsprung's Disease)

  • 김기홍;김한성;이성철
    • Advances in pediatric surgery
    • /
    • 제11권1호
    • /
    • pp.9-18
    • /
    • 2005
  • Abnormal distribution of enteric nerves such as adrenergic, cholinergic and non-adrenergic non-cholinergic nerves (NANC) may cause the failure of relaxation at the involved bowel segment in Hirschsprung's disease (HD). Nitric oxide (NO) is a major inhibitory NANC neurotransmitter in the gastrointestinal tract. NO is synthesized by activation of nNOS (neuronal nitric oxide synthase) in the intramural ganglion cells and regulates bowel movement. To assess the distribution of nNOS in HD, immunohistochemical staining to nNOS was utilized on paraffin embedded specimens. Ten control colon specimens were tested for feasibility of staining. Immunohistochemisrty was done on ganglionic colon as well as aganglionic segment of 15 patients with HD. nNOS immunoreactivity was observed in the neuronal cells, small cells and nerve fibers in the muscle layer and submucosal neuronal cells of control specimens. This finding was also observed in the ganglionic segments of HD. But, there was no nNOS immunoreactivity in aganglionic segments of HD. In conclusion nNOS immunohistochemical staining of paraffin embedded specimen is feasible and reliable. And the results suggest that the relaxation failure of the aganglionic bowel in HD is related to the absence of nNOS containing cells and nerve fibers.

  • PDF

Topical Irradiation of UVA to The Eye Induces Immunosuppression in The Mice via Nitric-Oxise Dependent Neuronal Pathways

  • Hiramoto, Keiichi;Yanagihara, Nobuyo;Sato, Eisuke F.;Inoue, Masayasu
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.470-471
    • /
    • 2002
  • It has been well documented that dermal irradiation by ultraviolet A (UVA) locally decreases the number of Langerhans cells and suppresses contact hypersensitivity of the skin. We found that topical irradiation of UVA to the eye systemically decreased the number of Langerhans cells (LC) in the dorsalskin and lymph nodes and elicited lymphocyte apoptosis in the latter tissues but not in the thymus. Optic nerve resection, but not ciliary ganglionectomy, eliminated the UVA-induced decrease in dermal Langerhans cells by a mechanism that was partially inhibited by hypophysectomy. The immunosuppressive effect of UVA was not observed in knockout mice lacking inducible-type of nitric oxide synthase (iNOS). These results suggested that topical irradiation of UVA to the eye induced immunosuppression via NO-dependet neuronal pathways.

  • PDF

Ganglion cardiacum or juxtaductal body of human fetuses

  • Kim, Ji Hyun;Cho, Kwang Ho;Jin, Zhe Wu;Murakami, Gen;Abe, Hiroshi;Chai, Ok Hee
    • Anatomy and Cell Biology
    • /
    • 제51권4호
    • /
    • pp.266-273
    • /
    • 2018
  • The ganglion cardiacum or juxtaductal body is situated along the left recurrent laryngeal nerve in the aortic window and is an extremely large component of the cardiac nerve plexus. This study was performed to describe the morphologies of the ganglion cardiacum or juxtaductal body in human fetuses and to compare characteristics with intracardiac ganglion. Ganglia were immunostained in specimens from five fetuses of gestational age 12-16 weeks and seven fetuses of gestational age 28-34 weeks. Many ganglion cells in the ganglia were positive for tyrosine hydroxylase (TH; sympathetic nerve marker) and chromogranin A, while a few neurons were positive for neuronal nitric oxide synthase (NOS; parasympathetic nerve marker) or calretinin. Another ganglion at the base of the ascending aorta carried almost the same neuronal populations, whereas a ganglion along the left common cardinal vein contained neurons positive for chromogranin A and NOS but no or few TH-positive neurons, suggesting a site-dependent difference in composite neurons. Mixtures of sympathetic and parasympathetic neurons within a single ganglion are consistent with the morphology of the cranial base and pelvic ganglia. Most of the intracardiac neurons are likely to have a non-adrenergic non-cholinergic phenotype, whereas fewer neurons have a dual cholinergic/noradrenergic phenotype. However, there was no evidence showing that chromogranin A- and/or calretinin-positive cardiac neurons corresponded to these specific phenotypes. The present study suggested that the ganglion cardiacum was composed of a mixture of sympathetic and parasympathetic neurons, which were characterized the site-dependent differences in and near the heart.

Inhibitory Effects of Total Ginseng Saponin on Catecholamine Secretion from the Perfused Adrenal Medulla of SHRs

  • Jang, Seok-Jeong;Lim, Hyo-Jeong;Lim, Dong-Yoon
    • Journal of Ginseng Research
    • /
    • 제35권2호
    • /
    • pp.176-190
    • /
    • 2011
  • There seems to be some controversy about the effect of total ginseng saponin (TGS) on the secretion of catecholamines (CA) from the adrenal gland. Therefore, the present study aimed to determine whether TGS can affect the CA release in the perfused model of the adrenal medulla isolated from spontaneously hypertensive rats (SHRs). TGS (15-150 ${\mu}g/mL$), perfused into an adrenal vein for 90 min, inhibited the CA secretory responses evoked by acetylcholine (ACh, 5.32 mM) and high $K^+$ (56 mM, a direct membrane depolarizer) in a dose- and time-dependent fashion. TGS (50 ${\mu}g/mL$) also time-dependently inhibited the CA secretion evoked by 1.1-dimethyl-4 -phenyl piperazinium iodide (DMPP; 100 ${\mu}M$, a selective neuronal nicotinic receptor agonist) and McN-A-343 (100 ${\mu}M$, a selective muscarinic M1 receptor agonist). TGS itself did not affect basal CA secretion (data not shown). Also, in the presence of TGS (50 ${\mu}g/mL$), the secretory responses of CA evoked by veratridine (a selective $Na^+$ channel activator (50 ${\mu}M$), Bay-K-8644 (an L-type dihydropyridine $Ca^{2+}$ channel activator, 10 ${\mu}M$), and cyclopiazonic acid (a cytoplasmic $Ca^{2+}$-ATPase inhibitor, 10 ${\mu}M$) were significantly reduced, respectively. Interestingly, in the simultaneous presence of TGS (50 ${\mu}g/mL$) and N${\omega}$-nitro-L-arginine methyl ester hydrochloride [an inhibitor of nitric oxide (NO) synthase, 30 ${\mu}M$], the inhibitory responses of TGS on the CA secretion evoked by ACh, high $K^+$, DMPP, McN-A-343, Bay-K-8644, cyclopiazonic acid, and veratridine were considerably recovered to the extent of the corresponding control secretion compared with the inhibitory effect of TGS-treatment alone. Practically, the level of NO released from adrenal medulla after the treatment of TGS (150 ${\mu}g/mL$) was greatly elevated compared to the corresponding basal released level. Taken together, these results demonstrate that TGS inhibits the CA secretory responses evoked by stimulation of cholinergic (both muscarinic and nicotinic) receptors as well as by direct membrane-depolarization from the isolated perfused adrenal medulla of the SHRs. It seems that this inhibitory effect of TGS is mediated by inhibiting both the influx of $Ca^{2+}$ and Na+ into the adrenomedullary chromaffin cells and also by suppressing the release of $Ca^{2+}$ from the cytoplasmic calcium store, at least partly through the increased NO production due to the activation of nitric oxide synthase, which is relevant to neuronal nicotinic receptor blockade, without the enhancement effect on the CA release. Based on these effects, it is also thought that there are some species differences in the adrenomedullary CA secretion between the rabbit and SHR.