• Title/Summary/Keyword: Neuronal health

Search Result 160, Processing Time 0.022 seconds

Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions

  • Kim, Ki Hyun;Lee, Dahae;Lee, Hye Lim;Kim, Chang-Eop;Jung, Kiwon;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.239-247
    • /
    • 2018
  • In recent years, several therapeutic drugs have been rationally designed and synthesized based on the novel knowledge gained from investigating the actions of biologically active chemicals derived from foods, plants, and medicinal herbs. One of the major advantages of these naturalistic chemicals is their ability to interact with multiple targets in the body resulting in a combined beneficial effect. Ginseng is a perennial herb (Araliaceae family), a species within the genus Panax, and a highly valued and popular medicinal plant. Evidence for the medicinal and health benefits of Panax ginseng and its components in preventing neurodegeneration has increased significantly in the past decade. The beneficial effects of P. ginseng on neurodegenerative diseases have been attributed primarily to the antioxidative and immunomodulatory activities of its ginsenoside components. Mechanistic studies on the neuroprotective effects of ginsenosides revealed that they act not only as antioxidants but also as modulators of intracellular neuronal signaling and metabolism, cell survival/death genes, and mitochondrial function. The goal of the present paper is to provide a brief review of recent knowledge and developments concerning the beneficial effects as well as the mechanism of action of P. ginseng and its components in the treatment and prevention of neurodegenerative diseases.

The outbreaks and surveillance of animal rabies in Gangwon-do

  • Shin Myung-Kyun;Shin Eun-Kyung;Chung Dong-Soo;Cheong Ki-Soo;Park Young-Nam;Choi Jee-Hee
    • Korean Journal of Veterinary Service
    • /
    • v.27 no.4
    • /
    • pp.335-343
    • /
    • 2004
  • Although human rabies deaths are rare, the disease remains a public health problem in Korea. Here we report the outbreaks and surveillance of animal rabies in Gangwon-do. Animal rabies infections were identified in 119 animals from 1993 to 2003. The $78\%$ of all rabid animals were domestic species in Gangwon-do. Wild Korean raccoon dog (N. p. koreensis) continued to be the only reported rabid wildlife species. Outbreaks of rabies infections in Korean raccoon dogs are found in broad geographic regions across the northern Gangwon-do. The principal rabies hosts today are probably wild animals in Gangwon-do. The malaise, cerebral dysfunction, anxiety, confusion, agitation and abnormal behavior of the animals were the important symptoms of the disease. The Encephalitis, infiltration with lymphocytes and polymorphonuclear leukocytes and the inclusion bodies (Negri bodies) in neuronal cells were the specific histopathological signs. The results of indirect fluorescent antibody test (IFA) for animal rabies diagnosis were identical and the technique was useful to diagnose the disease. Preexposure vaccination is recommended for persons in high-risk groups, such as laboratory workers, veterinarians and certain animal handlers.

Green tea and type 2 diabetes

  • Park, Jae-Hyung;Bae, Jae-Hoon;Im, Sung-Soon;Song, Dae-Kyu
    • Integrative Medicine Research
    • /
    • v.3 no.1
    • /
    • pp.4-10
    • /
    • 2014
  • Green tea and coffee consumption have been widely popular worldwide. These beverages contain caffeine to activate the central nervous system by adenosine receptor blockade, and due to the caffeine, addiction or tolerance may occur. In addition to this caffeine effect, green tea and coffee consumption have always been at the center of discussions about human health, disease, and longevity. In particular, green tea catechins are involved in many biological activities such as antioxidation and modulation of various cellular lipid and proteins. Thus, they are beneficial against degenerative diseases, including obesity, cancer, cardiovascular diseases, and various inflammatory diseases. Some reports also suggest that daily consumption of tea catechins may help in controlling type 2 diabetes. However, other studies have reported that chronic consumption of green tea may result in hepatic failure, neuronal damage, and exacerbation of diabetes, suggesting that interindividual variations in the green tea effect are large. This review will focus on the effect of green tea catechins extracted from the Camellia sinensis plant on type 2 diabetes and obesity, and the possible mechanistic explanation for the experimental results mainly from our laboratory. It is hoped that green tea can be consumed in a suitable manner as a supplement to prevent the development of type 2 diabetes and obesity.

Lomustine Plus Hydroxyurea Chemotherapy for Primary Intramedullary Spinal Cord Tumor in a Maltese Dog

  • Song, Joong-Hyun;Yu, Do-Hyeon;Hwang, Tae-Sung;Lee, Hee-Chun;An, Su-Jin;Sur, Jung-Hyang;Kim, Young Joo;Jung, Dong-In
    • Journal of Veterinary Clinics
    • /
    • v.36 no.3
    • /
    • pp.180-183
    • /
    • 2019
  • A 7-year-old, male Maltese dog with a body weight of 2.8 kg was presented with a history of hind limbs ataxia that progressed to tetraparesis over a one-month period. Based on physical and neurological examinations, tetraparesis with concomitant UMN signs, kyphosis and severe neck pain were identified. On MRI scan, we tentatively diagnosed this patient as a primary intramedullary spinal cord tumor. Therapy with lomustine plus hydroxyurea and prednisolone was initiated and the clinical signs rapidly improved. The patient was regularly checked by MRI scan and the range of the mass was gradually reduced to complete remission for 11 months. About 19 months after treatment, the patient showed anemia and hematochezia which suspected as adverse effects of chemotherapy. The condition was getting worse over 2 months and the patient suddenly expired 657 days after initial presentation. On histopathological examination, the spinal cord sample was identified as a neuronal atrophy without evidence of tumor cell.

The Antimicrobial Insect Peptide CopA3 Blocks Ethanol-Induced Liver Inflammation and Liver Cell Injury in Mice

  • Kim, Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.157-163
    • /
    • 2022
  • Alcoholic liver disease (ALD), which encompasses alcoholic steatosis, alcoholic hepatitis, and alcoholic cirrhosis, is a major cause of morbidity and mortality worldwide. Although the economic and health impacts of ALD are clear, few advances have been made in its prevention or treatment. We recently demonstrated that the insect-derived antimicrobial peptide CopA3 exerts anti-apoptotic and anti-inflammatory activities in various cell systems, including neuronal cells and colonic epithelial cells. Here, we tested whether CopA3 inhibits ethanol-induced liver injury in mice. Mice were intraperitoneally injected with ethanol only or ethanol plus CopA3 for 24 h and then liver injury and inflammatory responses were measured. Ethanol enhanced the production of proinflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, interferon (IFN)-γ, and IL-10. It also induced hepatocyte apoptosis and ballooning degeneration in hepatocytes. Notably, all these effects were eliminated or significantly reduced by CopA3 treatment. Collectively, our findings demonstrate that CopA3 ameliorates ethanol-induced liver cell damage and inflammation, suggesting the therapeutic potential of CopA3 for treating ethanol-induced liver injury.

Microbial Components and Effector Molecules in T Helper Cell Differentiation and Function

  • Changhon Lee;Haena Lee;John Chulhoon Park;Sin-Hyeog Im
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.7.1-7.27
    • /
    • 2023
  • The mammalian intestines harbor trillions of commensal microorganisms composed of thousands of species that are collectively called gut microbiota. Among the microbiota, bacteria are the predominant microorganism, with viruses, protozoa, and fungi (mycobiota) making up a relatively smaller population. The microbial communities play fundamental roles in the maturation and orchestration of the immune landscape in health and disease. Primarily, the gut microbiota modulates the immune system to maintain homeostasis and plays a crucial role in regulating the pathogenesis and pathophysiology of inflammatory, neuronal, and metabolic disorders. The microbiota modulates the host immune system through direct interactions with immune cells or indirect mechanisms such as producing short-chain acids and diverse metabolites. Numerous researchers have put extensive efforts into investigating the role of microbes in immune regulation, discovering novel immunomodulatory microbial species, identifying key effector molecules, and demonstrating how microbes and their key effector molecules mechanistically impact the host immune system. Consequently, recent studies suggest that several microbial species and their immunomodulatory molecules have therapeutic applicability in preclinical settings of multiple disorders. Nonetheless, it is still unclear why and how a handful of microorganisms and their key molecules affect the host immunity in diverse diseases. This review mainly discusses the role of microbes and their metabolites in T helper cell differentiation, immunomodulatory function, and their modes of action.

Neuroprotective effect of caffeic acid phenethyl ester in 3-nitropropionic acid-induced striatal neurotoxicity

  • Bak, Jia;Kim, Hee Jung;Kim, Seong Yun;Choi, Yun-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.3
    • /
    • pp.279-286
    • /
    • 2016
  • Caffeic acid phenethyl ester (CAPE), derived from honeybee hives, is a bioactive compound with strong antioxidant activity. This study was designed to test the neuroprotective effect of CAPE in 3-nitropropionic acid (3NP)-induced striatal neurotoxicity, a chemical model of Huntington's disease (HD). Initially, to test CAPE's antioxidant activity, a 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) antioxidant assay was employed, and CAPE showed a strong direct radical-scavenging effect. In addition, CAPE provided protection from 3NP-induced neuronal cell death in cultured striatal neurons. Based on these observations, the in vivo therapeutic potential of CAPE in 3NP-induced HD was tested. For this purpose, male C57BL/6 mice were repeatedly given 3NP to induce HD-like pathogenesis, and 30 mg/kg of CAPE or vehicle (5% dimethyl sulfoxide and 95% peanut oil) was administered daily. CAPE did not cause changes in body weight, but it reduced mortality by 29%. In addition, compared to the vehicle-treated group, robustly reduced striatal damage was observed in the CAPE-treated animals, and the 3NP-induced behavioral deficits on the rotarod test were significantly rescued after the CAPE treatment. Furthermore, immunohistochemical data showed that immunoreactivity to glial fibrillary acidic protein (GFAP) and CD45, markers for astrocyte and microglia activation, respectively, were strikingly reduced. Combined, these data unequivocally indicate that CAPE has a strong antioxidant effect and can be used as a potential therapeutic agent against HD.

Effects of GaAsAl laser on the spinal neuronal activity induced by noxious mechanical stimulation (GaAsAl 레이저가 물리적 통증반응과 관련된 척수내 신경세포의 활성에 미치는 영향)

  • Song, Young-Wha;Lee, Young-Gu;Lim, Jong-Soo
    • Journal of Korean Physical Therapy Science
    • /
    • v.7 no.2
    • /
    • pp.545-558
    • /
    • 2000
  • The present study was designed to investigate the effect of low power GaAsAl laser on Fos expression in the spinal cord induced by noxious mechanical stimulation. Noxious mechanical stimulation was applied to the right hind paw following 30min of low power laser treatment using different intensity and treatment point and the resulting Fos expression in the spinal cord dorsal horn was compared to that obtained in rats exposed only to the noxious mechanical stimulation. The results were summarized as follows: 1. In intact control rats, only a few Fos like immunoreactive(Fos-IR) neurons were evident in the lumbar spinal cord dorsal horn. Similarly, following prolonged inhalation anesthesia, Fos-IR neurons were absent in the dorsal horn of the lumbar spinal cord. In animals treated with noxious mechanical stimulation, neurons with nuclei exhibiting Fos immunostaining were distributied mainly in the medial half of ipsilateral laminae I-V at lumbar segments L3-5. These findings directly indicated that prolonged anesthesia used in this study did not affect the Fos expression in the spinal cord dorsal horn of intact animals and noxious mechanical stimulation treated animals. 2. In acupoint treated animals, 10mW of laser stimulation, not 3mW intensity, significantly reduced the number of Fos immunoreactive neurons in the spinal dorsal horn induced by noxious mechanical stimulation(P<.01). However, the supressive effect of low power laser stimulatin was not observed in 3m Wand 10m W of laser stimulation into non-acupoint. These data indicate that 10mW of low power laser stimulation into acupoint is capable of inhibiting the expression of Fos in the dorsal horn induced by noxious mechanical stimulation. In conclusion, these findings raise the possibility that low power laser stimulation into acupoint may be a promising alternative medicine therapy for the mechanical stimulation induced pain in the clinical field.

  • PDF

Protective Effects of Samul-tang on Cell Death Inducded by Oxidative Stress in C6 Glial Cell (사물탕이 산화적 스트레스에 의하여 유발되는 신경세포의 세포 사멸에 미치는 보호효과)

  • Kim, Hyung-Woo;Kim, Kyung-Yoon;Kim, Gye-Yep;Kim, Chae-Hyun;Jeong, Jong-Gil;Choi, Chan-Hun;Hwang, Gui-Seong;Lee, Sang-Yeong;Jeong, Hyun-Woo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.5
    • /
    • pp.969-973
    • /
    • 2009
  • Samul-tang (SMT), which was firstly described in (Hwajegukbang) Song dynasty, is well known remedy for blood diseases in Oriental medicine. SMT is traditional herbal-remedy composed of Rehmanniae Radix Preparat, Angelicae Gigantis Radix, Cnidii Rhizoma and Paeoniae Radix. Recently, SMT has known to have anti-oxidative action. However, the reports on anti-oxidantic action in neuroglial cells are rare. In addition, the exact mechanisms are unclear. For these reasons, we investigated the protective effects of SMT on cell death induced by oxidative stress using C6 glioma cells. In our results, SMT accelerated proliferation rates of C6 cells in vitro. In addition, levels of LDH release induced by oxidative stress were lowered by treatment with SMT. Finally, protective effects on cell death induced by chemicals such as paraquat and rotenone were observed. In conclusion, these results suggest the possibility to protect brain cell or neuronal cell from damage induced by oxidative stress.

Mechanisms of Cadmium Carcinogenicity in the Gastrointestinal Tract

  • Bishak, Yaser Khaje;Payahoo, Laleh;Osatdrahimi, Alireza;Nourazarian, Alireza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.9-21
    • /
    • 2015
  • Cancer, a serious public health problem in worldwide, results from an excessive and uncontrolled proliferation of the body cells without obvious physiological demands of organs. The gastrointestinal tract, including the esophagus, stomach and intestine, is a unique organ system. It has the highest cancer incidence and cancer-related mortality in the body and is influenceed by both genetic and environmental factors. Among the various chemical elements recognized in the nature, some of them including zinc, iron, cobalt, and copper have essential roles in the various biochemical and physiological processes, but only at low levels and others such as cadmium, lead, mercury, arsenic, and nickel are considered as threats for human health especially with chronic exposure at high levels. Cadmium, an environment contaminant, cannot be destroyed in nature. Through impairment of vitamin D metabolism in the kidney it causes nephrotoxicity and subsequently bone metabolism impairment and fragility. The major mechanisms involved in cadmium carcinogenesis could be related to the suppression of gene expression, inhibition of DNA damage repair, inhibition of apoptosis, and induction of oxidative stress. In addition, cadmium may act through aberrant DNA methylation. Cadmium affects multiple cellular processes, including signal transduction pathways, cell proliferation, differentiation, and apoptosis. Down-regulation of methyltransferases enzymes and reduction of DNA methylation have been stated as epigenetic effects of cadmium. Furthermore, increasing intracellular free calcium ion levels induces neuronal apoptosis in addition to other deleterious influence on the stability of the genome.