• Title/Summary/Keyword: Neuronal health

Search Result 160, Processing Time 0.229 seconds

Effects of Gypenosides on Dopaminergic Neuronal Cell Death in 6-Hydroxydopamine-lesioned Rat Model of Parkinson's Disease with Long-term L-DOPA Treatment

  • Shin, Keon Sung;Zhao, Ting Ting;Park, Hyun Jin;Kim, Kyung Sook;Choi, Hyun Sook;Lee, Myung Koo
    • Natural Product Sciences
    • /
    • v.22 no.3
    • /
    • pp.187-192
    • /
    • 2016
  • The goal of this study was to determine whether gypenosides (GPS) exert protective effects against dopaminergic neuronal cell death in a 6-hydroxydopamine (OHDA)-lesioned rat model of Parkinson's disease (PD) with or without long-term 3,4-dihydroxyphenylalanine (L-DOPA) treatment. Rats were injected with 6-OHDA in the substantia nigra to induce PD-like symptoms; 14 days after injection, groups of 6-OHDA-lesioned animals were treated for 21 days with GPS (25 or 50 mg/kg) and/or L-DOPA (20 mg/kg). Dopaminergic neuronal cell death was assessed by counting tyrosine hydroxylase (TH)-immunopositive cells in the substantia nigra and measuring levels of dopamine, norepinephrine, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) in the striatum. Dopaminergic neuronal cell death induced by 6-OHDA lesions was ameliorated by GPS treatment (50 mg/kg). L-DOPA treatment exacerbated 6-OHDA-induced dopaminergic neuronal cell death; however, these effects were partially reversed by GPS treatment (25 and 50 mg/kg). These results suggest that GPS treatment is protective against dopaminergic neuronal cell death in a 6-OHDA-lesioned rat model of PD with long-term L-DOPA treatment. Therefore, GPS may be useful as a phytotherapeutic agent for the treatment of PD.

Phytochemicals That Act on Synaptic Plasticity as Potential Prophylaxis against Stress-Induced Depressive Disorder

  • Soojung, Yoon;Hamid, Iqbal;Sun Mi, Kim;Mirim, Jin
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.148-160
    • /
    • 2023
  • Depression is a neuropsychiatric disorder associated with persistent stress and disruption of neuronal function. Persistent stress causes neuronal atrophy, including loss of synapses and reduced size of the hippocampus and prefrontal cortex. These alterations are associated with neural dysfunction, including mood disturbances, cognitive impairment, and behavioral changes. Synaptic plasticity is the fundamental function of neural networks in response to various stimuli and acts by reorganizing neuronal structure, function, and connections from the molecular to the behavioral level. In this review, we describe the alterations in synaptic plasticity as underlying pathological mechanisms for depression in animal models and humans. We further elaborate on the significance of phytochemicals as bioactive agents that can positively modulate stress-induced, aberrant synaptic activity. Bioactive agents, including flavonoids, terpenes, saponins, and lignans, have been reported to upregulate brain-derived neurotrophic factor expression and release, suppress neuronal loss, and activate the relevant signaling pathways, including TrkB, ERK, Akt, and mTOR pathways, resulting in increased spine maturation and synaptic numbers in the neuronal cells and in the brains of stressed animals. In clinical trials, phytochemical usage is regarded as safe and well-tolerated for suppressing stress-related parameters in patients with depression. Thus, intake of phytochemicals with safe and active effects on synaptic plasticity may be a strategy for preventing neuronal damage and alleviating depression in a stressful life.

Cilostazol attenuates kainic acid-induced hippocampal cell death

  • Park, Young-Seop;Jin, Zhen;Jeong, Eun Ae;Yi, Chin-ok;Lee, Jong Youl;Park, In Sung;Roh, Gu Seob
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.1
    • /
    • pp.63-70
    • /
    • 2018
  • Cilostazol is a selective inhibitor of type 3 phosphodiesterase (PDE3) and has been widely used as an antiplatelet agent. Cilostazol mediates this activity through effects on the cyclic adenosine monophosphate (cAMP) signaling cascade. Recently, it has attracted attention as a neuroprotective agent. However, little is known about cilostazol's effect on excitotoxicity induced neuronal cell death. Therefore, this study evaluated the neuroprotective effect of cilostazol treatment against hippocampal neuronal damage in a mouse model of kainic acid (KA)-induced neuronal loss. Cilostazol pretreatment reduced KA-induced seizure scores and hippocampal neuron death. In addition, cilostazol pretreatment increased cAMP response element-binding protein (CREB) phosphorylation and decreased neuroinflammation. These observations suggest that cilostazol may have beneficial therapeutic effects on seizure activity and other neurological diseases associated with excitotoxicity.

Methamphetamine-Induced Neuronal Damage: Neurotoxicity and Neuroinflammation

  • Kim, Buyun;Yun, Jangmi;Park, Byoungduck
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.381-388
    • /
    • 2020
  • Methamphetamine (METH) is a highly addictive psychostimulant and one of the most widely abused drugs worldwide. The continuous use of METH eventually leads to drug addiction and causes serious health complications, including attention deficit, memory loss and cognitive decline. These neurological complications are strongly associated with METH-induced neurotoxicity and neuroinflammation, which leads to neuronal cell death. The current review investigates the molecular mechanisms underlying METH-mediated neuronal damages. Our analysis demonstrates that the process of neuronal impairment by METH is closely related to oxidative stress, transcription factor activation, DNA damage, excitatory toxicity and various apoptosis pathways. Thus, we reach the conclusion here that METH-induced neuronal damages are attributed to the neurotoxic and neuroinflammatory effect of the drug. This review provides an insight into the mechanisms of METH addiction and contributes to the discovery of therapeutic targets on neurological impairment by METH abuse.

Neuronal Responses in the Globus Pallidus during Subthalamic Nucleus Electrical Stimulation in Normal and Parkinson's Disease Model Rats

  • Ryu, Sang Baek;Bae, Eun Kyung;Kim, Jinhyung;Hwang, Yong Sup;Im, Changkyun;Chang, Jin Woo;Shin, Hyung-Cheul;Kim, Kyung Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.299-306
    • /
    • 2013
  • Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been widely used as a treatment for the movement disturbances caused by Parkinson's disease (PD). Despite successful application of DBS, its mechanism of therapeutic effect is not clearly understood. Because PD results from the degeneration of dopamine neurons that affect the basal ganglia (BG) network, investigation of neuronal responses of BG neurons during STN DBS can provide informative insights for the understanding of the mechanism of therapeutic effect. However, it is difficult to observe neuronal activity during DBS because of large stimulation artifacts. Here, we report the observation of neuronal activities of the globus pallidus (GP) in normal and PD model rats during electrical stimulation of the STN. A custom artifact removal technique was devised to enable monitoring of neural activity during stimulation. We investigated how GP neurons responded to STN stimulation at various stimulation frequencies (10, 50, 90 and 130 Hz). It was observed that activities of GP neurons were modulated by stimulation frequency of the STN and significantly inhibited by high frequency stimulation above 50 Hz. These findings suggest that GP neuronal activity is effectively modulated by STN stimulation and strongly dependent on the frequency of stimulation.

Coculture of Schwann Cells and Neuronal Cells for Myelination in Rat

  • Kim, Ji-Young;Choi, Chang-Shik;Hong, Seong-Karp
    • Rapid Communication in Photoscience
    • /
    • v.3 no.3
    • /
    • pp.48-49
    • /
    • 2014
  • For in vitro myelination system, Schwann cells and neuronal cells of rat were cocultured. Schwann cells and neuronal cells, respectively, were obtained from dorsal root ganglion of rat embryos (E15). This method includes four steps: first step of suspension of the embryonic dorsal root ganglion cells, second step of addition of anti-mitotic cocktail, third step of purification of dorsal root cells, and fourth step of addition of Schwann cells to dorsal root ganglion cells. We made a highly purified population of myelination in a short period through this procedure and identified myelination basic protein using antibody of myelination basic protein.

Isolation of human mesenchymal stem cells from the skin and their neurogenic differentiation in vitro

  • Byun, Jun-Ho;Kang, Eun-Ju;Park, Seong-Cheol;Kang, Dong-Ho;Choi, Mun-Jeong;Rho, Gyu-Jin;Park, Bong-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.6
    • /
    • pp.343-353
    • /
    • 2012
  • Objectives: This aim of this study was to effectively isolate mesenchymal stem cells (hSMSCs) from human submandibular skin tissues (termed hSMSCs) and evaluate their characteristics. These hSMSCs were then chemically induced to the neuronal lineage and analyzed for their neurogenic characteristics in vitro. Materials and Methods: Submandibular skin tissues were harvested from four adult patients and cultured in stem cell media. Isolated hSMSCs were evaluated for their multipotency and other stem cell characteristics. These cells were differentiated into neuronal cells with a chemical induction protocol. During the neuronal induction of hSMSCs, morphological changes and the expression of neuron-specific proteins (by fluorescence-activated cell sorting [FACS]) were evaluated. Results: The hSMSCs showed plate-adherence, fibroblast-like growth, expression of the stem-cell transcription factors Oct 4 and Nanog, and positive staining for mesenchymal stem cell (MSC) marker proteins (CD29, CD44, CD90, CD105, and vimentin) and a neural precursor marker (nestin). Moreover, the hSMSCs in this study were successfully differentiated into multiple mesenchymal lineages, including osteocytes, adipocytes, and chondrocytes. Neuron-like cell morphology and various neural markers were highly visible six hours after the neuronal induction of hSMSCs, but their neuron-like characteristics disappeared over time (24-48 hrs). Interestingly, when the chemical induction medium was changed to Dulbecco's Modified Eagle Medium (DMEM) supplemented with fetal bovine serum (FBS), the differentiated cells returned to their hSMSC morphology, and their cell number increased. These results indicate that chemically induced neuron-like cells should not be considered true nerve cells. Conclusion: Isolated hSMSCs have MSC characteristics and express a neural precursor marker, suggesting that human skin is a source of stem cells. However, the in vitro chemical neuronal induction of hSMSC does not produce long-lasting nerve cells and more studies are required before their use in nerve-tissue transplants.

PROTECTION EFFECT OF GINSENG EXTRACT AGAINST APOPTOTIC CELL DEATH INDUCED BY 2,2,5,5-TETRACHLOROBIPHENYL IN NEURONAL SK-N-MC CELLS

  • Lee, Ji-Young;Kim, Jae-Won;Song, Ji-Eun;Kim, Soo-Jung;Chung, Weon-Gu;Kim, Yong-Hoon;Lee, Bo-Ram;Kim, Jin-Hee;Choi, Young-Keun;Joo, Woo-Hong;Cho, Yong-Kweon;Moon, Ja-Young
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.112-112
    • /
    • 2001
  • Oxidative stress plays an important role in the pathological process of neurodegenerative diseases. Polychlorinated biphenyls (PCBs) are ubiquitous environmental contaminants, some of which may be neurotoxic. Our previous studies showed that 2,2',5,5'-TetracWorobiphenyl (PCB 52) induced apoptotic death in human neuronal SK-N-MC cells, which was demonstrated on gel electrophoresis by visualization of the proteolytic cleavages of $\beta$-catenin and poly (ADP-ribose) polymerase (PARP) and of the production of characteristic ladder patterns of DNA fragmentation.

  • PDF

Screening of 56 Herbal formulas covered by the National Health Insurance Service on Dementia-related Factors (국민 건강보험 급여 한약 처방 56종의 치매 주요 생리지표 및 신경세포 변화에 대한 효능 비교 연구)

  • Lim, Hye-Sun;Kim, Yu Jin;Kim, Yoon ju;Kim, Bu-Yeo;Jeong, Soo-Jin
    • The Journal of Korean Medicine
    • /
    • v.39 no.3
    • /
    • pp.1-16
    • /
    • 2018
  • Objectives: The purpose of this study was to investigate the effects of 56 herbal formulae covered by the National Health Insurance Corporation (NHIC) on dementia-related biomarkers and neuronal cell changes. Methods: The 56 herbal formulae were extracted with 70% ethanol at $100^{\circ}C$ for 2 h. The antioxidant properties was measured by radical scavenging assay using ABTS+ radical. The acetylcholinesterase (AChE) activity was tested by Ellman's assay and $amyloid-{\beta}$ ($A{\beta}$) aggregation was determined using fluorescence method. To estimate the inhibitory effects of herbal formulae on neuronal cell death and inflammation using HT22 hippocampal cells and BV-2 microglia, respectively. Results: Among the 56 herbal formulae, Dangguiyukhwangtang, Banhasasimtang, Samhwangsasimtang, Cheongwiesan, Hwangryunhaedoktang, Banhabaekchulchunmatang, Jaeumganghwatang, Cheongseoikgitang, and Hoechunyanggyuksan has a significant inhibitory effects on acetylcholinesterase (AChE) activity. Doinseunggitang and Samhwangsasimtang exerted the effect on the inhibition of $amyloid-{\beta}$ ($A{\beta}$) aggregation. Additionally, 10 herbal formulae affected AChE and $A{\beta}$ aggregation revealed antioxidant activity as well as neuroprotective and anti-neuroinflammation effects in neuronal cell lines. Conclusions: 10 herbal formulae that have been shown to be effective against the major dementia markers have been shown to have antioxidant activity, neuronal cell protection and inhibition of brain inflammation. Further investigation of these herbal formulae will need to be validated in dementia animal models.