• 제목/요약/키워드: Neuronal Damage

검색결과 355건 처리시간 0.025초

Neuroprotective Effect of N-nitro-L-arginine Methylester Pretreatment on the Early Stage of Kainic Acid Induced Neuronal Degeneration in the Rat Brain

  • Koh, Jun-Seok;Kim, Gook-Ki;Lim, Young-Jin;Rhee, Bong-Arm;Kim, Tae-Sung
    • Journal of Korean Neurosurgical Society
    • /
    • 제38권4호
    • /
    • pp.287-292
    • /
    • 2005
  • Objective : Kainic acid[KA] enhances the expression of nitric oxide synthase, increases nitric oxide[NO], and thus evokes epileptic convulsion, which results in neuronal damage in the rat brain. NO may stimulate cyclooxygenase type-2 [COX-2] activity, thus producing seizure and neuronal injury, but it has also been reported that KA-induced seizure and neurodegeneration are aggravated on decreasing the COX-2 level. This study was undertaken to investigate whether the suppression of NO using the NOS inhibitor, N-nitro-L-arginine methyl ester[L-NAME], suppresses or enhances the activity of COX-2. Methods : Silver impregnation and COX-2 immunohistochemical staining were used to localize related pathophysiological processes in the rat forebrain following KA-induced epileptic convulsion and L-NAME pretreatment. Post-injection survival of the rat was 1, 2, 3days and 2months, respectively. Results : After the systemic administration of KA in rats, neurodegeneration increased with time in the cornu ammonis [CA] 3, CA 1 and amygdala, as confirmed by silver impregnation. On pretreating L-NAME, KA-induced neuronal degeneration decreased. COX-2 enzyme activities increased after KA injection in the dentate gyrus, CA 3, CA 1, amygdala and pyriform cortex, as determined by COX-2 staining. L-NAME pretreatment prior to KA-injection, caused COX-2 activities to increase compared with KA- injection only group by 1day and 2days survival time point. Conclusion : These results suggest that L-NAME has a neuroprotective effect on KA-induced neuronal damage, especially during the early stage of neurodegeneration.

원지(遠志)가 뇌혈류 저하에 의한 흰쥐 뇌조직의 산화적 손상과 해마신경세포 자연사에 미치는 영향 (Effects of Polygalae Radix on Brain Tissue Oxidative Damage and Neuronal Apoptosis in Hippocampus Induced by Cerebral Hypoperfusion in Rats)

  • 구용모;곽희준;권만재;송민철;이지승;신정원;손낙원
    • 대한본초학회지
    • /
    • 제31권1호
    • /
    • pp.7-15
    • /
    • 2016
  • Objectives : Polygalae Radix (POL) has an ameliorating effect on learning and memory impairment caused by cerebral hypoperfusion. In regard to POL's action mechanism, this study was carried out to investigate the effects of POL on oxidative damage and neuronal apoptosis induced by cerebral hypoperfusion in rats.Methods : The cerebral hypoperfusion was induced by permanent bilateral common carotid artery occlusion (pBCAO) in Sprague-Dawley rats. POL was administered orally once a day (130 mg/kg of water-extract) for 28 days starting at 4 weeks after the pBCAO. Superoxide dismutase (SOD) activities and malondialdehyde (MDA) levels in the brain tissue were measured using ELISA method. Expressions of 4-hydroxynonenal (4HNE) and 8-hydroxy-2'- deoxyguanosine (8-OHdG) were observed using immunohistochemistry. In addition, neuronal apoptosis was evaluated with Cresyl violet staining, TUNEL labeling, and immunohistochemistry against Bax and caspase-3.Results : POL treatment significantly increased SOD activities and significantly reduced MDA levels in the cerebral cortex. The up-regulations of 4HNE and 8-OHdG expression caused by pBCAO in the CA1 of hippocampus were significantly attenuated by POL treatment. POL treatment also restored the reduction of CA1 thickness and CA1 neurons caused by pBCAO and significantly attenuated the apoptotic markers including TUNEL-positive cells, Bax, and caspase-3 expression in the CA1 of hippocampus.Conclusions : The results show that POL attenuated the oxidative damage in brain tissue and neuronal apoptosis in the hippocampus caused by the cerebral hypoperfusion. It suggests that POL can be a beneficial medicinal herb to treat the brain diseases related to cerebral hypoperfusion.

Cognitive Dysfunction and Hippocampal Damage Induced by Hypoxic-Ischemic Brain Injury and Prolonged Febrile Convulsions in Immature Rats

  • Byeon, Jung Hye;Kim, Gun-Ha;Kim, Joo Yeon;Sun, Woong;Kim, Hyun;Eun, Baik-Lin
    • Journal of Korean Neurosurgical Society
    • /
    • 제58권1호
    • /
    • pp.22-29
    • /
    • 2015
  • Objective : Perinatal hypoxic-ischemic encephalopathy (HIE) and prolonged febrile seizures (pFS) are common neurologic problems that occur during childhood. However, there is insufficient evidence from experimental studies to conclude that pFS directly induces hippocampal injury. We studied cognitive function and histological changes in a rat model and investigated which among pFS, HIE, or a dual pathologic effect is most detrimental to the health of children. Methods : A rat model of HIE at postnatal day (PD) 7 and a pFS model at PD10 were used. Behavioral and cognitive functions were investigated by means of weekly open field tests from postnatal week (PW) 3 to PW7, and by daily testing with the Morris water maze test at PW8. Pathological changes in the hippocampus were observed in the control, pFS, HIE, and HIE+pFS groups at PW9. Results : The HIE priming group showed a seizure-prone state. The Morris water maze test revealed a decline in cognitive function in the HIE and HIE+pFS groups compared with the pFS and control groups. Additionally, the HIE and HIE+pFS groups showed significant hippocampal neuronal damage, astrogliosis, and volume loss, after maturation. The pFS alone induced minimal hippocampal neuronal damage without astrogliosis or volume loss. Conclusion : Our findings suggest that pFS alone causes no considerable memory or behavioral impairment, or cellular change. In contrast, HIE results in lasting memory impairment and neuronal damage, gliosis, and tissue loss. These findings may contribute to the understanding of the developing brain concerning conditions caused by HIE or pFS.

Baicalein Protects 6-OHDA-induced Neuronal Damage by Suppressing Oxidative Stress

  • Im, Heh-In;Nam, Eun-Joo;Lee, Eun-Sun;Hwang, Yu-Jin;Kim, Yong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제10권6호
    • /
    • pp.309-315
    • /
    • 2006
  • The protective effects of baicalein, one of the flavonoids in Scutellaria baicalensis Georgi, were evaluated against 6-hydroxydopamine (6-OHDA)-induced neuronal damage in mice and cultured human neuroblastoma cells. Nigrostriatal damage was induced by stereotaxically injecting 6-OHDA into the right striatum. Baicalein was administered intraperitoneally 30 min before and 90 min after lesion induction. Animals received a further daily injection of baicalein for 3 consecutive days. Two weeks after 6-OHDA injection, contralateral rotational asymmetry was observed by apomorphine challenge in lesioned mice. Tyrosine hydroxylase (TH) immunohistochemistry revealed a significant loss of terminals in lesioned striatum and the reduction of the numbers of TH-positive cell in the ipsilateral substantia nigra (SN). In addition, the levels of dopamine (DA) and DA metabolites were reduced and lipid peroxidation was increased in lesioned striatum. However, baicalein treatment reduced apomorphine-induced rotational behavior in 6-OHDA-lesioned mice, and increased TH immunoreactivity in the striatum and SN, and DA levels in lesioned striatum. Lipid peroxidation induced by 6-OHDA was also inhibited by baicalein treatment. Furthermore, when SH-SY5Y human neuroblastoma cells were treated with baicalein, 6-OHDA-induced cytotoxicity and reactive oxygen species (ROS) production were significantly reduced. These results indicate that baicalein effectively protects 6-OHDA-induced neuronal damage through antioxidant action.

허혈 상태의 PC12 세포에 대한 대보원전(大補元煎)의 신경보호효과 (Neuroprotective Effects of Daebowonjeon on PC12 Cells Exposed to Ischemia)

  • 김봉상;이선우;문병순
    • 동의생리병리학회지
    • /
    • 제21권1호
    • /
    • pp.117-125
    • /
    • 2007
  • Neuronal ischemia is a pathological process caused by a lack of oxygen (anoxia) and glucose (hypoglycemia), resulting in neuronal death. It is believed that apoptosis is one of the mechanisms involved in ischemic cell death. Neuronal apoptosis is a process characterized by nuclear DNA fragmentation, changes of plasma membrane organization. To elucidate the mechanism of neuronal death following ischemic insult and to develop neuroprotective effects of Daebowonjeon(DBWJ) against ischemic damage, in vitro models are used. In vitro models of cell death have been devloped with pheochromocytoma (PC12) cell, which have become widely used as neuronal models of oxidative stress, trophic factor, serum deprivation and chemical hypoxia. Using a special ischemic device and PC12 cultures, we investigated an in vitro model of ischemia based on combined Oxygen and Glucose Deprivation (OGD) insult, followed by reoxygenation, mimicking the pathological conditions of ischemia. In this study, Daebowonjeon rescued PC12 cells from Oxygen-Glucose Deprivation (OGD)-induced cell death in a dose-dependent manner The nuclear staining of PC12 cells clearly showed that DBWJ attenuated nuclear condensation and fragmentation which represent typical neuronal apoptotic characteristics. DBWJ also prevents the LDH release and induction of Hypoxia Inducing Factor (HIF)-1 by OGD-exposed PC12 cells. Furthermore, DBWJ reduced the activation of polyADP-ribose polymerase (PARP) by OGO-exposed PC12 cells. These results suggest that apoptosis is an important characteristic of OGD-induced neuronal death and that oriental medicine, such as DBWJ, may prevent PC12 cell from OG D-induced neuronal death by inhibiting the apoptotic process.

The protective effects of ethanolic extract of Clematis terniflora against corticosterone-induced neuronal damage via the AKT and ERK1/2 pathway

  • Noh, Yoohun;Cheon, Seungui;Kim, In Hye;Kim, Inyong;Lee, Seung-Ah;Kim, Do-Hee;Jeong, Yoonhwa
    • BMB Reports
    • /
    • 제51권8호
    • /
    • pp.400-405
    • /
    • 2018
  • Chronic stress induces neuronal cell death, which can cause nervous system disorders including Parkinson's disease and Alzheimer's disease. In this study, we evaluated the neuroprotective effects of Clematis terniflora extract (CTE) against corticosterone-induced apoptosis in rat pheochromocytoma (PC12) cells, and also investigated the underlying molecular mechanisms. At concentrations of 300 and $500{\mu}g/ml$, CTE significantly decreased apoptotic cell death and mitochondrial damage induced by $200{\mu}M$ corticosterone. CTE decreased the expression levels of endoplasmic reticulum (ER) stress proteins GRP78, GADD153, and mitochondrial damage-related protein BAD, suggesting that it downregulates ER stress evoked by corticosterone. Furthermore, our results suggested that these protective effects were mediated by the upregulation of p-AKT and p-ERK1/2, which are involved in cell survival signaling. Collectively, our results indicate that CTE can lessen neural damage caused by chronic stress.

Effect of Sedative Dose of Propofol on Neuronal Damage after Transient Forebrain Ischemia in Mongolian Gerbils

  • Lee, Seong-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권1호
    • /
    • pp.73-79
    • /
    • 2000
  • This study investigated whether propofol, an intravenous, non-barbiturate anesthetic, could reduce brain damage following global forebrain ischemia. Transient global ischemia was induced in gerbils by occlusion of bilateral carotid arteries for 3 min. Propofol (50 mg/kg) was administered intraperitoneally 30 min before, immediately after, and at 1 h, 2 h, 6 h after occlusion. Thereafter, propofol was administered twice daily for three days. Treated animals were processed in parallel with ischemic animals receiving 10% intralipid as a vehicle or with sham-operated controls. In histologic findings, counts of viable neurons were made in the pyramidal cell layer of the hippocampal CA1 area 4 days after ischemia. The number of viable neurons in the pyramidal cell layer of CA1 area was similar in animals treated with a vehicle or a subanesthetic dose of propofol. In terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) assay, semiquantitative analysis of dark-brown neuronal cells was made in the hippocampal CA1 area. There was no significant difference in the degree of TUNEL staining in the hippocampal CA1 area between vehicle-treated and propofol-treated animals. These results show that subanesthetic dose of propofol does not reduce delayed neuronal cell death following transient global ischemia in Mongolian gerbils.

  • PDF

구척(狗脊)이 흰쥐의 척수압박에 의한 신경세포 손상에 미치는 영향 (Effects of Root of Cibotii Rhizoma on Neuronal Damage of Spinal Cord Contusion Injury in Rats)

  • 박원상;김은석;신정원;김범회;김성준;강희;손낙원
    • 한방재활의학과학회지
    • /
    • 제20권2호
    • /
    • pp.1-15
    • /
    • 2010
  • Objectives : This study was performed to evaluate the effects of root of Cibotii rhizoma(CR) ethanol extract on the tissue and neuronal damage of the spinal cord injury(SCI). Methods : SCI was induced by mechanical contusion following laminectomy of 10th thoracic vertebra in Sprague-Dawley rats. CR was orally given once a day for 7 days after SCI. Tissue damage and nerve fiber degeneration were examined with cresyl violet and luxol fast blue(LFS) histochemistry. HSP72(as neuronal damage marker), MAP2(as nerve fiber degeneration marker), c-Fos(immediate early gene), and Bax(pro-apoptotic molecule) expressions were examined using immuno-histochemistry. Individual immuno-positive cells expressing HSP72, MAP2, c-Fos and Bax were observed on the damaged level and the upper thoracic and lower lumbar spinal segments. Results : 1. CR reduced degeneration of nerve fibers and motor neuron shrinkage in the ventral horn of the lower lumbar spinal segment, but generally it did not seem to ameliorate the tissue injury following SCI. 2. CR reduced demyelination in the ventral and lateral funiculus of the lower lumbar spinal segment. 3. CR reduced HSP72 expression on the neurons in the peri-central canal gray matter adjacent to the damaged region. 4. CR strengthened MAP2 expression on the motor neurons in the ventral horn and on nerve fibers in the lateral funiculus of the lower lumbar spinal segment. 5. CR reduced c-Fos positive cells in the peri-lesion and the dorsal horn of the damaged level and in the ventral horn of the lower lumbar spinal segment. 6. CR reduced Bax positive cells in the peri-lesion and the dorsal horn of the damaged level and in the ventral horn of the lower lumbar spinal segment. Conclusions : These results suggest that CR plays an inhibitory role against secondary neuronal damage and nerve fiber degeneration. following SCI.

저산소증으로 유발된 지연성 신경세포사에 우황청심원이 미치는 영향 (The Effect of Woohwangcheongsim-won on Delayed Neuronal Death in Hypoxia)

  • 김민석;정승현;신길조;문일수;이원철
    • 대한한의학회지
    • /
    • 제23권3호
    • /
    • pp.145-163
    • /
    • 2002
  • Objectives: The purpose of this investigation was to evaluate the effects of Woohwangcheongsim-won and to study the mechanism for neuronal death protection in hypoxia with Embryonic day 20 (E20) cortical cells of a rat (Sprague Dawley). Methods: E20 cortical cells were dissociated in neurobasal media and grown for 14 days in vitro (DIV). On 14 DIV, Woohwangcheongsim-won was added to the culture media for 24 hrs or 72 hrs. On 17 DIV, cells were given a hypoxic shock and further incubated in normoxia for another three days. On 20 DIV, Woohwangcheongsim-won's effects for neuronal death protection were evaluated by LDH assay, propidium iodide stain and phospho-H2AX immunostain and the mechanisms were studied by Bcl-2, Bak, Bax, caspase family, PKCα, ca1pain I. Results & Conclusions : 1. This study indicated that Woohwangcheongsim-won's effects for neuronal death protection in hypoxia were confirmed by LDH assay, propidium iodide stain and phospho-H2AX immunostain in culture method of Embryonic day 20(E20) cortical neuroblasts. 2. Woohwangcheongsim-won's mechanisms for neuronal death protection in hypoxia are to reduce the membrane damage fraction, to restrain DNA truncate, to restrain inflow of cytochrome c into cellularity caused by Bak diminution, to reduce the caspase cascade intiator caspase-8 and the effector caspase-3, to reduce the calpain I activity and to increase PKCand its activity in the membrane fraction. (J Korean Oriental Moo 2002;23(3):145~163)

  • PDF

A Conclusive Review on Amyloid Beta Peptide Induced Cerebrovascular Degeneration and the Mechanism in Mitochondria

  • Merlin, Jayalal L.P.
    • 통합자연과학논문집
    • /
    • 제6권3호
    • /
    • pp.125-137
    • /
    • 2013
  • Promising evidence suggests that amyloid beta peptide ($A{\beta}$), a key mediator in age-dependent neuronal and cerebrovascular degeneration, activates death signalling processes leading to neuronal as well as non-neuronal cell death in the central nervous system. A major cellular event in $A{\beta}$-induced apoptosis of non-neuronal cells, including cerebral endothelial cells, astrocytes and oligodendrocytes, is mitochondrial dysfunction. The apoptosis signalling cascade upstream of mitochondria entails $A{\beta}$ activation of neutral sphingomyelinase, resulting in the release of ceramide from membrane sphingomyelin. Ceramide then activates protein phosphatase 2A (PP2A), a member in the ceramide-activated protein phosphatase (CAPP) family. PP2A dephosphorylation of Akt and FKHRL1 plays a pivotal role in $A{\beta}$-induced Bad translocation to mitochondria and transactivation of Bim. Bad and Bim are pro-apoptotic proteins that cause mitochondrial dysfunction characterized by excessive ROS formation, mitochondrial DNA (mtDNA) damage, and release of mitochondrial apoptotic proteins including cytochrome c, apoptosis inducing factor (AIF), endonuclease G and Smac. The cellular events activated by $A{\beta}$ to induce death of non-neuronal cells are complex. Understanding these apoptosis signalling processes will aid in the development of more effective strategies to slow down age-dependent cerebrovascular degeneration caused by progressive cerebrovascular $A{\beta}$ deposition.