• Title/Summary/Keyword: Neuronal Cultures

Search Result 76, Processing Time 0.026 seconds

Glutamate-induced Modulation of $Ca^{2+}$/Calmodulin-dependent Protein Kinase IV in Cultured Rat Cortical Neurons (배양 대뇌피질 신경세포에서 glutamate에 의한 $Ca^{2+}$/calmodulin-dependent protein kinase IV의 활성변화)

  • 조정숙
    • YAKHAK HOEJI
    • /
    • v.45 no.4
    • /
    • pp.419-425
    • /
    • 2001
  • The neuronal cell death induced by excess glutamate (Glu) has been implicated in many acute and chronic neurodegenerative diseases including cerebral ischemia. Glu-induced elevation of intra-cellular $Ca^{2+}$ plays a critical role in the excitotoxicity, partly through the activation of a variety of $Ca^{2+}$ dependent enzymes. In the present study, we investigated the Glu-induced modulation of $Ca^{2+}$/calmodulin-dependent protein kinase IV (CaMK IV), a multifunctional enzyme abundantly present in the nuclei of neurons. The exposure of cultured rat cortical neurons to $100{\mu}$M Glu for 3 min dramatically increased CaMK IV activity up to 4.5-fold of the control-treated enzyme activity. The activation was very rapid, reaching peak at 3 min and then declined gradually. Under the same experimental conditions, time-dependent acute and delayed neuronal cell death was observed. Immunoblot analyses using specific antibodies showed that the expressions of CaMK IV and $CaMKK_{\alpha}$ were time-dependently modulated by Glu. Taken together, these results imply that the modulation of CaMK IV activity by Glu may be involved in the cascade of events resulting in neuronal cell death in cortical cultures.

  • PDF

Antioxidant and Neuroprotective Effects of Hesperidin and its Aglycone Hesperetin

  • Cho, Jung-Sook
    • Archives of Pharmacal Research
    • /
    • v.29 no.8
    • /
    • pp.699-706
    • /
    • 2006
  • The present study evaluated antioxidant and neuroprotective activities of hesperidin, a flavanone mainly isolated from citrus fruits, and its aglycone hesperetin using cell-free bioassay system and primary cultured rat cortical cells. Both hesperidin and hesperetin exhibited similar patterns of 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities. While hesperidin was inactive, hesperetin was found to be a potent antioxidant, inhibiting lipid peroxidation initiated in rat brain homogenates by $Fe^{2+}$ and L-ascorbic acid. In consistence with these findings, hesperetin protected primary cultured cortical cells against the oxidative neuronal damage induced by $H_2O_2$ or xanthine and xanthine oxidase. In addition, it was shown to attenuate the excitotoxic neuronal damage induced by excess glutamate in the cortical cultures. When the excitotoxicity was induced by the glutamate receptor subtype-selective ligands, only the N-methyl-D-aspartic acid-induced toxicity was selectively and markedly inhibited by hesperetin. Furthermore, hesperetin protected cultured cells against the $A_{{\beta}(25-35)}-induced$ neuronal damage. Hesperidin, however, exerted minimal or no protective effects on the neuronal damage tested in this study. Taken together, these results demonstrate potent antioxidant and neuroprotective effects of hesperetin, implying its potential role in protecting neurons against various types of insults associated with many neurodegenerative diseases.

Rhus verniciflua Stokes Attenuates Glutamate-induced Neurotoxicity in Primary Cultures of Rat Cortical Cells

  • Jeong, Eun-Ju;Sung, Sang-Hyun;Kim, Jin-Woong;Kim, Seung-Hyun;Kim, Young-Choong
    • Natural Product Sciences
    • /
    • v.14 no.3
    • /
    • pp.156-160
    • /
    • 2008
  • The methanolic extract of Rhus verniciflua Stokes (RVS-T) and its fractions (RVS-H, RVS-C, RVS-E and RVS-B) showed significant neuroprotective activity against glutamate-induced toxicity in primary cultures of rat cortical cells. RVS-B, which showed the most potent neuroprotective activity, was further fractionated to yield RVS-B5. Treatment of cortical cells with the RVS-T, RVS-B and RVS-B5 reduced the cellular ROS level and restored the reduced activities of glutathione reductase and SOD induced by glutamate. Although, the activity of glutathione peroxidase was not virtually changed by glutamate, RVS-B5 increased the glutathione peroxidase activity. In addition, these three tested fractions significantly restored the content of GSH which was decreased by glutamate insult in our cultures. Taken together, it could be postulated that RVS extract, in particular its fraction RVS-B5, protected neuronal cells against glutamate-induced neurotoxicity through acting on the antioxidative defense system.

Investigating the Morphology and Kinetics of Three-Dimensional Neuronal Networks on Electro-Spun Microstructured Scaffolds

  • Kim, Dongyoon;Kim, Seong-Min;Kang, Donghee;Baek, Goeun;Yoon, Myung-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.277.2-277.2
    • /
    • 2013
  • Petri dishes and glass slides have been widely used as general substrates for in vitro mammalian cell cultures due to their culture viability, optical transparency, experimental convenience, and relatively low cost. Despite the aforementioned benefit, however, the flat two-dimensional substrates exhibit limited capability in terms of realistically mimicking cellular polarization, intercellular interaction, and differentiation in the non-physiological culture environment. Here, we report a protocol of culturing embryonic rat hippocampal neurons on the electro-spun polymeric network and the results from examination of neuronal cell behavior and network formation on this culture platform. A combinatorial method of laser-scanning confocal fluorescence microscopy and live-cell imaging technique was employed to track axonal outgrowth and synaptic connectivity of the neuronal cells deposited on this model culture environment. The present microfiber-based scaffold supports the prolonged viability of three-dimensionally-formed neuronal networks and their microscopic geometric parameters (i.e., microfiber diameter) strongly influence the axonal outgrowth and synaptic connection pattern. These results implies that electro-spun fiber scaffolds with fine control over surface chemistry and nano/microscopic geometry may be used as an economic and general platform for three-dimensional mammalian culture systems, particularly, neuronal lineage and other network forming cell lines.

  • PDF

Neurotrophic Actions of Ginsenoside Rbi, Peptide Growth Factors and Cytokines

  • Masahiro Sakanaka;Wen, Tong-Chun;Kohji Sato;Zhang, Bo
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.21-30
    • /
    • 1998
  • Ginseng root has been considered to prevent neuronal degeneration associated with brain ischemia, but experimental proof in support of this speculation is limited. Moreover, few studies have compared the neuroprotective actions of ginseng ingredients with those of peptide growth factors and cytokines isf vivo. Using a gerbil forebrain ischemia model, we demonstrated that the oral administration of red ginseng powder before an ischemic insult prevents delayed neuronal death in the hippocampal CAI field and that a neuroprotective molecule within red ginseng powder is ginsenoside Rbl. The neurotrophic effect of ginsenoside Rbl, when examined in the gerbil ischemia model and in neuronal cultures was as potent as or more potent than the effects of epidermal growth factor, ciliary neurotrophic factor, erythropoietin, prosaposin, interleukin-6 and interleukin-3. Besides the protection of hippocampal CAI neurons against brain ischemia/repercussion injuries, ginsenoside Rbl was shown to prevent place navigation disability, cortical infarction and secondary thalamic degeneration in stroke-prone spontaneous hypertensive rats with permanent occlusion of the unilateral middle cerebral artery distal to the striate branches. These findings may validate the empirical use of ginseng root for the treatment of cerebrovascular diseases

  • PDF

Neuroprotective and Anti-Oxidative Effect of Puerariae Radix on Hippocampal Neurons and BV-2 Microglia Cells (갈근(葛根)의 뇌해마(腦海馬) 신경세포 손상보호와 항산화(抗酸化) 효능에 대한 연구)

  • Kim, Sang-Hyun;Kim, Youn-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.416-425
    • /
    • 2005
  • This study demonstrated neuroprotective and anti-oxidative effects of Puerariae Radix for cerebral ischemia. Neuroprotective effects were studied by using oxygen/glucous deprivation of the organotypic hippocampal slice cultures to complement limitations of in vivo and in vitro models for cerebral ischemia study. Anti-oxidative effects were studied on BV-2 microglia cells damaged by $H_2O_2$ and nitric oxide. The results obtained are as follows; The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant decreases of neuronal cell death area and cell death area percentages in CA1 region of ischemic damaged hippocampus cultures during whole 48 hours of the experiment. The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant decreases of neuronal cell death area and cell death area percentages in DG region of ischemic damaged hippocampus cultures during whole 48 hours of the experiment. The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant decreases of TUNEL-positive cells in both CA1 region and DG region of ischemic damaged hippocampus cultures. The group treated with $50\;{\mu}g/m{\ell}$ of Puerariae Radix demonstrated significant decrease of TUNEL-positive cells in CA1 region. The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant decreases of LDH concentrations in culture media of ischemic damaged hippocampus cultures. The groups treated with 0.5 and $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant increases of cell viabilities of BV-2 microglia cells damaged by $H_2O_2$. The group treated with $5{\mu}g/m{\ell}$ of Puerariae Radix revealed significant increase of cell viability of BV-2 microglia cells damaged by nitric oxide. These results suggested that Puerariae Radix of cerebral ischemic revealed neuroprotective effects through the control effect of apoptosis and oxidative damages.

Neuroprotective Effects of Medicinal Herbs in Organotypic Hippocampal Slice Cultures (뇌해마의 장기양 조직배양을 이용한 한약물의 뇌신경세포손상 보호효능 연구)

  • Jung, Hyuk-Sang;Sohn, Nak-Won;Lee, Won-Chul
    • The Journal of Internal Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.461-472
    • /
    • 2004
  • Objectives : For the screening of neuroprotective effects of medicinal herbs, the complex system of animal models suffer some disadvantages in controlling critical parameters such as blood pressure and body temperature. Additionally, application of drugs to the appropriate brain area sometimes is difficult, due to poor permeability though the blood brain barrier, and so potential protective effects might be masked. Methods : Organotypic hippocampal slice culture (OHSC) method has the advantages of being relatively easy to prepare and of maintaining the general structure, including tissue integrity and the connections between cells. Drugs can easily be applied and neuronal damage can easily be quantified by using tissues and culture media. This study demonstrates neuroprotective effects of Puerariae radix (葛根, PR), Salviae miltiorrhizae radix (丹蔘, SR), Rhei rhizoma (大黃, RR), and Bupleuri radix (柴胡, BR). These were screenedand compared to MK-801, antagonist of NMDA receptors, by using OHSC of 1 week-old Sprague-Dawley rats. Oxygen/glucose deprivation (OGD) were conducted in an anaerobic chamber $(85%\;N_2,\;10%\;CO_2\;and\;5%\;H_2)$ in a deoxygenated glucose-free medium for 60 minutes. Water extracts of each herbs were treated to culture media with $5\;{\mu}g/ml$ for 48 hours. Results : Neuronal cell death in the cultures was monitored by densitometric measurements of the cellular uptake of propidium iodide (PI). PI fluorescence images were obtained at 48 hours after the OGD and medicinal herb treatment. Also TUNEL-positive cells in the CAI and DG regions and LDH concentrations in culture media were measured at 48 hours after the OGD. According to measured data, MK-801, PR, SR and BR demonstrated significant neuroprotective effect against excessive neuronal cell death and apoptosis induced by the OGD insult. Especially, PR revealed similar neuroprotective effect to MK-801 and RR demonstrated weak neuroprotective effect. Conclusions : These results suggest that OHSC can be a suitable method for screening of neuroprotective effects of medicinal herbs. (This work was supported by the research program of Dongguk University and Grant 01-PJ9-PG1-01CO03-0003 from Ministry of Health & Welfare.)

  • PDF

OXIDANT-INDUCED NEUROTOXICITY WAS BLOCKED BY ANTIOXIDANTS AND METAL CHELATORS IN MOUSE CEREBRAL NEURON CULTURES

  • Park, S.T.;H.Y. Yoon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2002.05a
    • /
    • pp.89-89
    • /
    • 2002
  • It is well known that oxygen radicals induce neuronal cell damage by initiation of lipid peroxidation chain reaction. Recent work has been also demonstrated that enzymatically generated free radicals cause the release of glutamate and aspartate from cultured rat hippocampal slices.(omitted)

  • PDF

Neuronal Phenotypes and Gene Expression Profiles of the Human Adipose Tissue-Derived Stromal Cells in the Neuronal Induction (신경 분화 유도한 인체 지방조직 유래 간질세포의 신경 표현형과 유전자 발현)

  • Shim, Su Kyung;Oh, Deuk Young;Jun, Young Joon;Lee, Paik Kwon;Ahn, Sang Tae;Rhie, Jong Won
    • Archives of Plastic Surgery
    • /
    • v.34 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • Purpose: Human adipose tissue-derived stromal cells(hADSCs) can be expanded in vitro and induced to differentiate into multiple mesenchymal cell types. In this study we have examined various neuronal phenotypes and gene expression profiles of the hADSCs in the neuronal induction. Methods: The hADSCs were isolated from human adipose tissue and they were characterized by the flow cytometry analysis using CD13, CD29, CD34, CD45, CD49d, CD90, CD105 and HLA-DR cell surface markers. We differentiated the hADSCs into the neuronal lineage by using chemical induction medium and observed the cells with contrast microscopy. The immunocytochemistry and western blotting were performed using the NSE, NeuN, Trk-A, Vimentin, N-CAM, S-100 and ${\beta}$-Tubulin III antibodies. Results: The hADSCs were positive for CD13($90.3{\pm}4%$), CD29($98.9{\pm}0.7%$), CD49d($13.6{\pm}6%$), CD90 ($99.4{\pm}0.1%$), CD105($96%{\pm}2.8%$) but negative for CD34, CD45 and HLA-DR. The untreated cultures of hADSCs predominately consisted of spindle shaped cells and a few large, flat cells. Three hours after the addition of induction medium, the hADSCs had changed morphology and adopted neuronal-like phenotypes. The result of immunocytochemistry and western blotting showed that NSE, NeuN, Trk-A, Vimentin, N-CAM, S-100 and ${\beta}$-Tubulin III were expressed. However, NSE, NeuN, Vimentin were weakly expressed in the control. Conclusion: Theses results indicate that hADSCs have the capabillity of differentiating into neuronal lineage in a specialized culture medium. hADSCs may be useful in the treatment of a wide variety of neurological disorders.

The Effects of Anti-Alzheimer on CT105-induced PC 12 Cells by Corynoxeine Isolated from Uncariae Ramulus et Uncus (pCT105로 원격 유도된 PC12 세포에서 조구등으로부터 분리한 corynoxeine의 항치매 효과)

  • Kang Hyung Won;Kim Sang Tae;Lyu Yeoung Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.4
    • /
    • pp.1111-1119
    • /
    • 2004
  • In this study, we investigated that the effects of corynoxeine on the apoptosis by inducible CT105 in PC 12 cells and neuronpathogenic agent as CT105 confirmed with apoptosis, DNA fragmentation, neurite outgrowth and immunocytochemistry analysis This study examines whether corynoxeine have an anti-alzhmeimer agent by inhibition of apoptosis by CT105 and induces neurite outgrowth. Cytotoxicity was assessed in PC12 cell cultures by DNA fragmentation and measuring lactate dehydrogenase (LDH) in the culture media. The treatment of corynoxeine in exposure of cultures to CT105 and provided complete protection against cytotoxicity. CT105-induced cytotoxicity was blocked by apoptotsis, repaired by DNA fragmentation, neurite outgrowth and exposure to CT105 expression and regenerated with neurite outgrowth and immunocytochemistry by corynoxeine. These results indicate that in neuronal cell cultures, damage of T105, repaired excitotoxicity by corynoxeine and CT105-induced cytotoxicity is blocked primarily by the activation of anti-apoptosis.