• Title/Summary/Keyword: Neuronal Cultures

Search Result 76, Processing Time 0.025 seconds

L-trans-pyrrolidine-2,4-dicarboxylate (PDC) induces Excitotoxic and Oxidative Neuronal Death in Cultured Cortical Neurons

  • Choi, Seung-Joon;Hwang, Shin-Ae;Kim, Do-Kyung;Kim, Jong-Keun
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.97-103
    • /
    • 2009
  • L-trans-pyrrolidine-2,4-dicarboxylate (PDC) is a potent inhibitor of glutamate transporters. In our current study, we investigated whether the neuronal death induced by PDC involves mechanisms other than excitotoxicity in mixed mouse cortical cultures. Cortical cultures at 13-14 days in vitro were used and cell death was assessed by measuring the lactate dehydrogenase efflux into bathing media. Glutamate and PDC both induced neuronal death in a concentration-dependent manner but the neurotoxic effects of glutamate were found to be more potent than those of PDC. Treatment with 10, 100 and 200 ${\mu}$M PDC equally potentiated 50 ${\mu}$M glutamate-induced neuronal death. The neuronal death induced by 75 ${\mu}$M glutamate was almost abolished by treatment with the NMDA antagonists, MK-801 and AP-5, but was unaffected by NBQX (an AMPA antagonist), trolox (antioxidant), BDNF or ZVAD-FMK (a pan-caspase inhibitor). However, the neuronal death induced by 200 ${\mu}$M PDC was partially but significantly attenuated by single treatments with MK-801, AP-5, trolox, BDNF or ZVAD-FMK but not NBQX. Combined treatments with MK-801 plus trolox, MK-801 plus ZVAD-FMK or MK-801 plus BDNF almost abolished neuronal death, whereas combined treatments with trolox plus ZVADFMK, trolox plus BDNF or ZVAD-FMK plus BDNF did not enhance the inhibitory action of any single treatment with these drugs. These results demonstrate that the neuronal death induced by PDC involves not only in the excitotoxicity induced by the accumulation of glutamate but also the oxidative stress induced by free radical generation. This suggests that apoptotic neuronal death plays a role in PDCinduced oxidative neuronal injury.

Protective Effects of Opuntia Ficus-Indica and Saururus Chinensis on Free Radical-Induced Neuronal Injury in Mouse Cortical Cell Cultures (생쥐 피질세포배양에서 Free Radical 유발 신경손상에 대한 손바닥선인장 및 삼백초의 보호효과)

  • Wie, Myung-Bok
    • YAKHAK HOEJI
    • /
    • v.44 no.6
    • /
    • pp.613-619
    • /
    • 2000
  • The author examined whether the methanol extracts of Opuntia ficus-indica fruit and Saururus chinensis have the inhibitory action on xanthine/xanthine oxidase (X/XO)-, $FeCl_2/ascorbic$ acid- and arachidonic acid-induced neurotoxicity in mouse cortical cell cultures. The methanol extracts ($10\;{\mu}g/ml{\sim}1\;mg/ml$) of Opuntia ficus-indica and Saururus chinensis were exhibited 53-89% and $48{\sim}100%$ inhibitory action on X/XO-induced neurotoxicity, respectively. At the range of same concentration, both extracts also attenuated the $FeCl_2/ascorbic$ acid-induced neurotoxicity by $35{\sim}100%$ and $15{\sim}98%$, respectively. In arachidonic acid neurotoxicity, the methanol extract (1 mg/ml) of Opuntia ficus-indica and Saururus chinensis reduced neuronal injury by 22% and 38%, respectively. These results suggest that Opuntia ficus-indica fruit and Saururus chinensis may contribute the neuroprotection in certain free radical-mediated neuronal injury.

  • PDF

Changes in the Neurogenesis and Axonal Sprouting in the Organotypic Hippocampal Slice Culture by Aβ25-35 Treatment

  • Jung, Yeon Joo;Jiang, Hui Ling;Lee, Kyung Eun
    • Applied Microscopy
    • /
    • v.42 no.4
    • /
    • pp.200-206
    • /
    • 2012
  • Induction of neurogenesis can occur in the hippocampus in response to various pathological conditions, such as Alzheimer's disease. The aim of this study was to investigate the changes that occur in endogenous neural stem cells in response to amyloid beta $(A{\beta})_{25-35}$-induced neuronal cell damage in organotypic hippocampal slice cultures. Cresyl violet staining and Fluoro-Jade B staining were used to detect neuronal cell damage and changes of mossy fiber terminals were observed by Timm's staining. The immunofl uorescence staining was used to detect the newly generated cells in the subgranular zone (SGZ) of the dentate gyrus with specific marker, 5-bromo-2'-deoxyuridine (BrdU), Ki-67, Nestin, and doublecortin (DCX). In compared to control slices, neuronal cell damage was observed and the mossy fibers were expanded to CA3 area by treatment with $A{\beta}_{25-35}$. Ki-67/Nestin- and BrdU/DCX-positive cells were detected in the SGZ. In conclusion, these results demonstrate that $A{\beta}$-induced neuronal damage results in an increase in endogenous neural stem cells in rat hippocampal slice cultures not only for gliosis but also for neurogenesis.

Oxygen/Glucose Deprivation and Reperfusion Cause Modifications of Postsynaptic Morphology and Activity in the CA3 Area of Organotypic Hippocampal Slice Cultures

  • Jung, Yeon Joo;Suh, Eun Cheng;Lee, Kyung Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.423-429
    • /
    • 2012
  • Brain ischemia leads to overstimulation of N-methyl-D-aspartate (NMDA) receptors, referred as excitotoxicity, which mediates neuronal cell death. However, less attention has been paid to changes in synaptic activity and morphology that could have an important impact on cell function and survival following ischemic insult. In this study, we investigated the effects of reperfusion after oxygen/glucose deprivation (OGD) not only upon neuronal cell death, but also on ultrastructural and biochemical characteristics of postsynaptic density (PSD) protein, in the stratum lucidum of the CA3 area in organotypic hippocampal slice cultures. After OGD/reperfusion, neurons were found to be damaged; the organelles such as mitochondria, endoplasmic reticulum, dendrites, and synaptic terminals were swollen; and the PSD became thicker and irregular. Ethanolic phosphotungstic acid staining showed that the density of PSD was significantly decreased, and the thickness and length of the PSD were significantly increased in the OGD/reperfusion group compared to the control. The levels of PSD proteins, including PSD-95, NMDA receptor 1, NMDA receptor 2B, and calcium/calmodulin-dependent protein kinase II, were significantly decreased following OGD/reperfusion. These results suggest that OGD/reperfusion induces significant modifications to PSDs in the CA3 area of organotypic hippocampal slice cultures, both morphologically and biochemically, and this may contribute to neuronal cell death and synaptic dysfunction after OGD/reperfusion.

Neuroprotective Effects of Methanol Extract of Sophorae Subprostratae Radix on Glutamate Excitotoxicity in PC12 Cells and Organotypic Hippocampal Slice Cultures

  • Kim, Soo-Man;Shim, Eun-Sheb;Kim, Bum-Hoi;Sohn, Young-Joo;Kim, Sung-Hoon;Jung, Hyuk-Sang;Sohn, Nak-Won
    • The Journal of Korean Medicine
    • /
    • v.29 no.5
    • /
    • pp.29-40
    • /
    • 2008
  • Objectives : It has been reported that Sophorae Subprostratae Radix (SSR) has a neuroprotective effect on cerebral ischemia in animals. In the present study, the authors investigated the neuroprotective effect of SSR on glutamate excitotoxicity. Glutamate excitotoxicity was induced by using NMDA, AMPA, and KA in PC12 cells and in organotypic hippocampal slice cultures. Methods :Methanolic extract of SSR was added at 0.5, 5, and 50 ${\mu}$g/ml to culture media for 24 hours. The effects of SSR were evaluated by measuring of cell viability, PI-stained neuronal cell death, TUNEL-positive cells, and MAP-2 immunoreactivity. Results : SSR increased PC12 cell viabilities significantly against AMPA-induced excitotoxicity, but not against NMDA-induced or KA-induced excitotoxicity. In organotypic hippocampal slice cultures damaged by NMDA-induced excitotoxicity, SSR attenuated neuronal cell death significantly in the CA1, CA3, and DG hippocampal regions and reduced TUNEL-positive cells significantly in CA1 and DG regions. In organotypic hippocampal slice cultures damaged by AMPA-induced excitotoxicity, SSR attenuated neuronal cell death and reduced TUNEL-positive cell numbers significantly in the CA1 and DG regions. In organotypic hippocampal slice cultures damaged by KA-induced excitotoxicity, SSR attenuated neuronal cell death significantly in CA3, but did not reduce TUNEL-positive cell numbers in CA1, CA3 or DG. In organotypic hippocampal slice cultures damaged by NMDA-induced excitotoxicity, SSR attenuated pyramidal neuron neurite retraction and degeneration in CA1. Conclusions : These results suggest that the neuroprotective effects of SSR are related to antagonistic effects on the NMDA and AMPA receptors of neuronal cells damaged by excitotoxicity and ischemia.

  • PDF

Effect of Chungpaesagan-tang on Ischemic Damage in Organotypic Hippocampal Slice Culture (청폐사간탕(淸肺瀉肝湯)이 뇌해마 조직배양의 신경세포 자연사에 미치는 영향)

  • Lee, Min-Young;Ku, Ja-Seung;Kim, Sung-Hoon;Kim, Yoon-Bum;Kim, Sun-Yeou;Choi, Hyeon;Sohn, Young-Joo;Jung, Hyuk-Sang;Sohn, Nak-Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.4
    • /
    • pp.771-777
    • /
    • 2008
  • Chungpaesagan-tang which is used for treating patients of brain in cerebrovascular disease frequently from clinical doctor has not reported about the effect of neuronal aptosis caused of brain ischemia. The aim of this study is to investigate effect of Chungpaesagan-tang protecting neuronal cells from being damaged by brain ischemia through using organotypic hippocampal slice cultures. We caused ischemic damage to organotypic hippocampal slice cultures by oxygen and glucose deprivation. And added Chungpaesagan-tang extract to cultures. thereafter we measured area percentage of propidium iodide (PI)-stained neuronal cell, lactate dehydrogenase (LDH) levels in culture media and Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Area percentage of PI-stained neuronal cells and count of TUNEL-positive cells in CA1 and DG area of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Chungpaesagan-tang extract. LDH levels in culture media of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Chungpaesagan-tang extract. Within pertinent density level, Chungpaesagan-tang has cell protection effect that prevents brain ischemia damaging neuronal cells and apoptosis increasing.

Effect of Yanggyuksanhwa-tang on Ischemic Damage in Organotypic Hippocampal Slice Culture (양격산화탕(凉膈散火湯)이 뇌해마 조직배양의 허혈손상에 따른 신경세포손상에 미치는 영향)

  • Lee, Hwan-Sung;Park, Sung-Joon;Jung, Kwang-Sik;Sohn, Young-Joo;Jung, Hyuk-Sang;Park, Dong-Il;Sohn, Nak-Won
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.231-242
    • /
    • 2008
  • Objectives : We can find out the experimental reports of Yanggyuksanhwa-tang, which has the function of regulating blood pressure related with cerebral disease, and increasing local cerebral blood stream volume, also has the recoveries for the damage of vessel endothelium, and endothelium hypertrophy caused by angiospasm after subarachnoid hemorrhage, and reduces the contraction of smooth muscle, so simultaneously improves necrosis. The aim of this study is to investigate effect of Yanggyuksanhwa-tang protecting neuronal cells from being damaged by brain ischemia through using organotypic hippocampal slice cultures. Methods : We caused ischemic damage to organotypic hippocampal slice cultures by oxygen and glucose deprivation, and Yanggyuksanhwa-tang extract was added to cultures. Thereafter we measured area percentage of propidium iodide (PI)-stained neuronal cell, lactate dehydrogenase (LDH) levels in culture media and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive cells. Results : Area percentage of PI-stained neuronal cells and count of TUNEL-positive cells in CA1 and DG area of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Yanggyuksanhwa-tang extract. LDH levels in culture media of organotypic hippocampal slice culture were significantly decreased in pertinent density level of Yanggyuksanhwa-tang extract. Conclusions : Within pertinent density level, Yanggyuksanhwa-tang has cell protection effect that prevents brain ischemia damaging neuronal cells and apoptosis increasing.

  • PDF

Ginsenosides Rbl and Rg3 Attenuate Glutamate-induced Neurotoxicity in Primary Cultures of Rat Cortical Cells

  • Kim, Young-C.;Kim, So.R.;Markelonis, George J.;Oh, Tae-H.
    • Proceedings of the Ginseng society Conference
    • /
    • 1998.06a
    • /
    • pp.47-56
    • /
    • 1998
  • In the present study, we assayed a number of compounds isolated from Panax ginseng C. A. Meyer (Araliaceae) for an ability to protect rat cortical cell cultures from the deleterious effects of the neurotoxicant, glutamate. We found that ginsenosides Rbl and Rg3 significantly attenuated glutamate-induced neurotoxicity. Brief exposure of cultures to excess glutamate caused extensive neuronal death. Glutamate-induced neuronal cell damage was significantly reduced by pretreatment with Rbl and Rgl. Ginsenosides Rbl and Rg3 inhibited the overproduction of nitric oxide which routinely follows glutamate neurotoxicity and preserved the level of superoxide dismutase in glutamate-treated cells. Furthermore, in cultures treated with glutamate, these ginsenosides inhibited the formation of malondialdehyde, a compound produced during lipid peroxidation, and diminished the influx of calcium. These results show that ginsenosides Rbl and Rg1 exerted significant neuroprotective effects on cultured cortical cells. As such, these compounds may be efficacious in protecting neurons from oxidative damage produced by exposure to excess glutamate.

  • PDF

Comparison of Neurotoxicity Induced by Some Glutathione Depletors in Mouse Cortical Cell Cultures

  • Lee, Gee-Woon;Lee, Kuy-Sook;Park, Sah-Hoon;Bae, Choon-Sang;Kim, Jong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.177-183
    • /
    • 2000
  • We examined the neurotoxic effects of 3 glutathione (GSH) depletors, buthionine sulfoximine (BSO), diethyl maleate (DEM) and phorone, under the presence of trolox, cycloheximide (CHX), pyrrolidine dithiocarbamate (PDTC) or MK-801 in primary mouse cortical cell cultures. All three depletors induced neuronal death in dose and exposure time dependent manner, and decreased total cellular GSH contents. The patterns of the neuronal death and the GSH decrements were dependent on the individual agents. DEM $(200\;{\mu}M)$ induced rapid and irreversible decrement of the GSH. BSO (1 mM) also decreased the GSH irreversibly but the rate of decrement was more progressive than that of DEM. Phorone (1 mM) reduced the GSH content to 40% by 4 hr exposure, that is comparable to the decrement of BSO, but the GSH recovered and reached over the control value by 36 hr exposure. BSO showed a minimal neurotoxicity $(0{\sim}10%)$ at the end of 24 hr exposure, but marked neuronal cell death at the end of 48 hr exposure. The BSO (1 mM)-induced neurotoxicity was markedly inhibited by trolox or CHX and partially attenuated by MK-801. DEM induced dose-dependent cytotoxicity at the end of 24 hr exposure. Over the doses of $400\;{\mu}M,$ glial toxicity also appeared. DEM $(200\;{\mu}M)-induced$ neurotoxicity was markedly inhibited by trolox or PDTC. Phorone (1 mM) induced moderate neurotoxicity (40%) at the end of 48 hr exposure. Only CHX showed significant inhibitory effect on the phorone-induced neurotoxicity. These results suggest that the GSH depletors induce neuronal injury via different mechanisms and that GSH depletors should be carefully employed in the researches of neuronal oxidative injuries.

  • PDF

Anti-Oxidative and Neuroprotective Effects of Rhei Rhizoma on BV-2 Microglia Cells and Hippocampal Neurons (대황(大黃)의 항산화와 신경세포손상 보호효능에 대한 연구)

  • Myung, Sung-Ha;Kim, Youn-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.647-655
    • /
    • 2005
  • This study demonstrated anti-oxidative and neuroprotective effects of Rhei Rhizoma. Anti-oxidative effects were studied on BV-2 microglia cells damaged by $H_2O_2$ and nitric oxide. Neuroprotective effects were studied by using oxygen/glucose deprivation of the organotypic hippocampal slice cultures. The results obtained are as follows; The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of neuronal cell death area and cell death area percentages in CA1 region of ischemic damaged hippocampus cultures during whole 48 hours of the experiment. The group treated with 50 mg/ml of Puerariae Radix demonstrated decreases of neuronal cell death area and cell death area percentages in CA1 region, but these were not significant statistically. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of neuronal cell death area and cell death area percentages in dentate gyrus of ischemic damaged hippocampus cultures during whole 48 hours of the experiment. The group treated with 50 mg/ml of Puerariae Radix demonstrated decreases of neuronal cell death area and cell death area percentages in dentate gyrus, but these were not significant statistically. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of TUNEL-positive cells in both CA1 region and dentate gyrus of ischemic damaged hippocampus cultures. The group treated with 50 mg/ml of Puerariae Radix demonstrated significant decrease of TUNEL-positive cells in CA1 region, but not in dentate gyrus of ischemic damaged hippocampus. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant decreases of LDH concentrations in culture media of ischemic damaged hippocampus cultures. The group treated with 50 mg/ml of Puerariae Radix demonstrated decrease of LDH concentrations in culture media, but it was not significant statistically. The groups treated with 0.5 and 5 mg/ml of Puerariae Radix revealed significant increases of cell viabilities of BV-2 microglia cells damaged by $H_2O_2$. The group treated with 50 mg/ml of Puerariae Radix demonstrated increase of cell viability of BV-2 microglia cells, but it was not significant statistically. The group treated with 0.5 mg/ml of Puerariae Radix revealed significant increase of cell viability of BV-2 microglia cells damaged by nitric oxide. The groups treated with 5 and 50 mg/ml of Puerariae Radix demonstrated increases of cell viabilities of BV-2 microglia cells, but these were not significant statistically. These results suggested that Puerariae Radix revealed neuroprotective effects through the control effect of apoptosis and oxidative damages.