• Title/Summary/Keyword: Neuronal Cells

Search Result 1,100, Processing Time 0.028 seconds

Gintonin influences the morphology and motility of adult brain neurons via LPA receptors

  • Kim, Do-Geun;Kim, Hyeon-Joong;Choi, Sun-Hye;Nam, Sung Min;Kim, Hyoung-Chun;Rhim, Hyewhon;Cho, Ik-Hyun;Rhee, Man Hee;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.45 no.3
    • /
    • pp.401-407
    • /
    • 2021
  • Background: Gintonin is an exogenous ginseng-derived G-protein-coupled lysophosphatidic acid (LPA) receptor ligand. LPA induces in vitro morphological changes and migration through neuronal LPA1 receptor. Recently, we reported that systemic administration of gintonin increases blood-brain barrier (BBB) permeability via the paracellular pathway and its binding to brain neurons. However, little is known about the influences of gintonin on in vivo neuron morphology and migration in the brain. Materials and methods: We examined the effects of gintonin on in vitro migration and morphology using primary hippocampal neural precursor cells (hNPC) and in vivo effects of gintonin on adult brain neurons using real time microscopic analysis and immunohistochemical analysis to observe the morphological and locational changes induced by gintonin treatment. Results: We found that treating hNPCs with gintonin induced morphological changes with a cell rounding following cell aggregation and return to individual neurons with time relapses. However, the in vitro effects of gintonin on hNPCs were blocked by the LPA1/3 receptor antagonist, Ki16425, and Rho kinase inhibitor, Y27632. We also examined the in vivo effects of gintonin on the morphological changes and migration of neurons in adult mouse brains using anti-NeuN and -neurofilament H antibodies. We found that acute intravenous administration of gintonin induced morphological and migrational changes in brain neurons. Gintonin induced some migrations of neurons with shortened neurofilament H in the cortex. The in vivo effects of gintonin were also blocked by Ki16425. Conclusion: The present report raises the possibility that gintonin could enter the brain and exert its influences on the migration and morphology of adult mouse brain neurons and possibly explains the therapeutic effects of neurological diseases behind the gintonin administration.

Neuronal Mechanisms that Regulate Vitellogenesis in the Fruit Fly (노랑초파리 난황형성과정 제어 신경 메커니즘)

  • Kim, Young-Joon;Zhang, Chen
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.109-115
    • /
    • 2022
  • Vitellogenesis is the process by which yolk accumulates in developing oocytes. The initiation of vitellogenesis represents an important control point in oogenesis. When females of the model insect Drosophila melanogaster molt to become adults, their ovaries lack mature vitellogenic oocytes, only producing them after reproductive maturation. After maturation, vitellogenesis stops until a mating signal re-activates it. Juvenile hormone (JH) from the endocrine organ known as the corpora allata (CA) is the major insect gonadotropin that stimulates vitellogenesis, and the seminal protein sex peptide (SP) has long been implicated as a mating signal that stimulates JH biosynthesis. In this review, we discuss our new findings that explain how the nervous system gates JH biosynthesis and vitellogenesis associated with reproductive maturation and the SP-induced post-mating response. Mated females exhibit diurnal rhythmicity in oogenesis. A subset of brain circadian pacemaker neurons produce Allatostatin C (AstC) to generate a circadian oogenesis rhythm by indirectly regulating JH and vitellogenesis through the brain insulin-producing cells. We also discuss genetic evidence that supports this model and future research directions.

Neuroprotective effects of resveratrol via anti-apoptosis on hypoxic-ischemic brain injury in neonatal rats (신생 백서의 저 산소 허혈 뇌손상에서 항세포사멸사를 통한 resveratrol의 신경보호 효과)

  • Shin, Jin Young;Seo, Min Ae;Choi, Eun Jin;Kim, Jin Kyung;Seo, Eok Su;Lee, Jun Hwa;Chung, Hai Lee;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.10
    • /
    • pp.1102-1111
    • /
    • 2008
  • Purpose : Resveratrol, extracted from red wine and grapes, has an anti-cancer effect, an antiinflammatory effect, and an antioxidative effect mainly in heart disease and also has neuroprotective effects in the adult animal model. No studies for neuroprotective effects during the neonatal periods have been reported. Therefore, we studied the neuroprotective effect of resveratrol on hypoxic-ischemic brain damage in neonatal rats via anti-apoptosis. Methods : Embryonic cortical neuronal cell culture of rat brain was performed using pregnant Sprague-Dawley (SD) rats at 18 days of gestation (E18) for the in vitro approach. We injured the cells with hypoxia and administered resveratrol (1, 10, and $30{\mu}g/mL$) to the cells at 30 minutes before hypoxic insults. In addition, unilateral carotid artery ligation with hypoxia was induced in 7-day-old neonatal rats for the in vivo approach. We injected resveratrol (30 mg/kg) intraperitoneally into animal models. Real-time PCR and Western blotting were performed to identify the neuroprotective effects of resveratrol through anti-apoptosis. Results : In the in vitro approach of hypoxia, the expression of Bax, caspase-3, and the ratio of Bax/Bcl-2, indicators of the level of apoptosis, were significantly increased in the hypoxia group compared to the normoxia group. In the case of the resveratrol-treated group, expression was significantly decreased compared to the hypoxia group. And the results in the in vivo approach were the same as in the in vitro approach. Conclusion : The present study demonstrates that resveratrol plays neuroprotective role in hypoxic-ischemic brain damage during neonatal periods through the mechanism of anti-apoptosis.

Nutritional composition, antioxidant capacity, and brain neuronal cell protective effect of cultivars of dried persimmon (Diospyros kaki) (품종별 곶감(Diospyros kaki)의 영양성분 분석, 산화방지 효과 및 뇌 신경세포 보호효과)

  • Kim, Jong Min;Park, Seon Kyeong;Kang, Jin Yong;Park, Sang Hyun;Park, Su Bin;Yoo, Seul Ki;Han, Hye Ju;Lee, Su-Gwang;Lee, Uk;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.225-237
    • /
    • 2018
  • This study was conducted to compare nutritional analysis and neuroprotective effect of 5 cultivars of Diospyros kaki (Dungsi, Godongsi, Gojongsi, Gabjubaekmok, and Bansi). In nutritional analysis, three free sugars: sucrose, glucose, and fructose, and six fatty acids: tartaric acid, hexadecanoic acid, palmitic acid, oleic acid, octadecenamide, and octadecane, were detected. Potassium and phosphorus levels were the highest in inorganic component analysis, and glutamic acid and aspartic acid were the highest contents in amino acid analysis. Vitamin C was detected in all cultivars. Total phenolic content was the highest in Dungsi. Antioxidant activities such as ABTS (3-ethylbenzothiazoline-6-sulfonic acid), DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activities, FRAP (ferric reducing/antioxidant power), and MDA (malondialdehyde) inhibitory effect were the highest in Gabjubaekmok. Acetylcholinesterase inhibitory activity, cell viability, intracellular reactive oxygen species (ROS) accumulation, and lactate dehydrogenase (LDH) release were measured to confirm the neuroprotective effect in MC-IXC cells. Gabjubaekmok showed significant acetylcholinesterase (AChE) inhibition and neuroprotection.

Expression of NGF in Estradiol Valerate-Induced Polycystic Ovary and CHO Cells (Estradiol Valerate에 의해 유도된 다낭성난소와 CHO세포에서 NGF발현)

  • Choi, Baik-Dong;Jeong, Soon-Jeong;Jeong, Moon-Jin;Lim, Do-Seon;Lee, Soo-Han;Kim, Seung-Hyun;Go, A-Ra;Kim, Se-Eun;Kang, Seong-Soo;Bae, Chun-Sik
    • Applied Microscopy
    • /
    • v.41 no.2
    • /
    • pp.109-116
    • /
    • 2011
  • Polycystic ovary syndrome (PCOS) is hormonal imbalance condition as the endocrine and metabolic disorder that induces the infertility and various complications in reproductive age women. Estradiol valerate (EV) is used hormone replacement therapy in menopausal women and is reported that excessive administration of EV induces the PCOS. Nerve growth factor (NGF) is the factor to regulate the survival and maturation of developing neuronal cell and is also synthesized in ovary. And NGF is overexpressed in EV-induced polycystic ovary (PCO) as previously reported. Therefore, this study examined the possibility of NGF as can be used the biological marker in diagnosis of PCOS, the hormonal imbalance condition, using PCO and CHO (chinese hamster ovarian) cell lines. The concentration of EV treatment is optimized a 1 mg as not influence on the proliferation of CHO cell but 2 mg and 3 mg of EV treatment have the inhibition effect at initial stage. The morphological change was not observed in CHO cell after dose dependent manner treatment of EV. Expression of NGF mRNA and protein is significantly increased at 30 min after EV treatment in CHO cells compared to that of control. And NGF protein expression is strongly increased in PCO tissue, which observed many follicular cysts compared to normal ovary tissue. Taken together, overexpression of NGF may be act as a molecule to induce an abnormal development of follicle, suggesting that NGF can be used as a biological marker in diagnosis of PCOS.

Genomic Organization and Promoter Characterization of the Murine Glial Cell-derived Neurotrophic Factor Inducible Transcription Factor (mGIF) Gene (생쥐 신경교세포 유래 신경영양인자 유도성 전사인자 (mGIF) 유전자의 유전체 구조 및 프로모터 특성 분석)

  • Kim, Ok-Soo;Kim, Yong-Man;Kim, Nam-Young;Lee, Eo-Jin;Jang, Min-Kyung;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.167-173
    • /
    • 2007
  • To study the transcriptional mechanisms by which expression of the murine glial cell-derived neurotrophic factor inducible transcription factor (mGIF) gene is regulated, a murine genomic clone was iso-lated using a mGIF cDNA as probe. A 13-kb genomic fragment, which comprises 4-kb upstream of the transcription initiation site was sequenced. The promoter region lacks a TATA box and CAAT box, is rich in G+C content, and has multiple putative binding sites for the transcription factor Spl. The mGIF gene also has consensus sequences for AP2 binding sites. The transcriptional activity of five deletion mutants of a 2.1-kb fragment was analyzed by modulating transcription of the heterologous luciferase gene in the promoterless plasmid pGL2-Basic. All mutants showed significant transcriptional activity in the murine neuroblastoma cell line NB41A3. Transient expression assays suggested the presence of a positive regulator between -213 and -129 while a negative regulator was found in the region between -806 and -214. Relatively strong transcriptional activity was observed in neuronal NB41A3, glial C6 cells and hepatic HepG2, but very weak activity in skeletal muscle C2C12 cells. These findings confirm the tissue-specific activity of the mGIF promoter and suggest that this gene shares structural and functional similarities with the dopamine receptor genes that it regulates.

Immunohistochemical Study of NSE in Small Cell Lung Cancer (SCLC) Combined with Serum Assay (소세포폐암에서 Neuron Specific Enolase의 면역조직 화학염색과 혈청농도에 관한 연구)

  • Kwak, Seung-Min;Kim, Hyung-Jung;Shin, Dong-Hwan;Jang, Joong-Hyun;Lee, Hong-Lyeol;Kim, Se-Kyu;Ahn, Chul-Min;Kim, Sung-Kyu;Lee, Won-Young;Lee, Kyi-Beom
    • Tuberculosis and Respiratory Diseases
    • /
    • v.39 no.6
    • /
    • pp.502-510
    • /
    • 1992
  • Background: Neuron specific enolase (NSE) is a neuronal form of the glycolytic enzyme enolase which was first found in extracts of brain tissue, and later in a variety of APUD cells and neurons of the diffuse endocrine system. SCLC shares many APUD properties with normal neuroendocrine cells. NSE immunostaining and serum NSE measurement may be a useful marker of neuroendocrine differentiation in lung tumors and diagnosis of small cell carcinoma. Methods: NSE immunohistochemical staining was done and at the same time serum NSE levels were measured in 22 small cell lung cancer and 21 non small cell lung cancer which were confirmed histologically. Results: 1) NSE immunoreactivity was detected in 9 of the 18 (50%) small cell lung cancer, in 5 of the 16 non small cell lung cancer. 2) Whereas the mean value in non-small cell lung cancer group was $11.79{\pm}4.47\;ng/ml$, the mean level of serum NSE in small cell lung cancer increased up to $59.3{\pm}77.8\;ng/ml$. In small cell lung cancer patients, mean value of limited disease group was $20.19{\pm}12.91\;ng/ml$, while mean value of extended disease group was $91.9{\pm}94.2\;ng/ml$ showing statistically significant difference. If serum levels above 20 ng/ml were tentatively defined as positive, 16 of 22 (73%) patients with SCLC had positive serum NSE level, but only one patient with NSCLC did. There was no correlation between serum NSE level and immunoreactivity of NSE. Conclusion: These studies indicate that serum NSE measurement may be a useful marker for the diagnosis and disease extent and NSE immunostaining can be used to demonstrate the neuroendocrine components of lung tumor.

  • PDF

Effects of Ginsenosides and Their Metabolites on Voltage-dependent Ca2+ Channel Subtypes

  • Lee, Jun-Ho;Jeong, Sang Min;Kim, Jong-Hoon;Lee, Byung-Hwan;Yoon, In-Soo;Lee, Joon-Hee;Choi, Sun-Hye;Lee, Sang-Mok;Park, Yong-Sun;Lee, Jung-Ha;Kim, Sung Soo;Kim, Hyoung-Chun;Lee, Boo-Yong;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.52-62
    • /
    • 2006
  • In previous reports we demonstrated that ginsenosides, active ingredients of Panax ginseng, affect some subsets of voltage-dependent $Ca^{2+}$ channels in neuronal cells expressed in Xenopus laevis oocytes. However, the major component(s) of ginseng that affect cloned $Ca^{2+}$ channel subtypes such as ${\alpha}_{1C}$(L)-, ${\alpha}_{1B}$(N)-, ${\alpha}_{1A}$(P/Q)-, ${\alpha}_{1E}$(R)- and ${\alpha}_{1G}$(T) have not been identified. Here, we used the two-microelectrode voltage clamp technique to characterize the effects of ginsenosides and ginsenoside metabolites on $Ba^{2+}$ currents ($I_{Ba}$) in Xenopus oocytes expressing five different $Ca^{2+}$ channel subtypes. Exposure to ginseng total saponins (GTS) induced voltage-dependent, dose-dependent and reversible inhibition of the five channel subtypes, with particularly strong inhibition of the ${\alpha}_{1G}$-type. Of the various ginsenosides, $Rb_1$, Rc, Re, Rf, $Rg_1$, $Rg_3$, and $Rh_2$, ginsenoside $Rg_3$ also inhibited all five channel subtypes and ginsenoside $Rh_2$ had most effect on the ${\alpha}_{1C}$- and ${\alpha}_{1E}$-type $Ca^{2+}$ channels. Compound K (CK), a protopanaxadiol ginsenoside metabolite, strongly inhibited only the ${\alpha}_{1G}$-type of $Ca^{2+}$ channel, whereas M4, a protopanaxatriol ginsenoside metabolite, had almost no effect on any of the channels. $Rg_3$, $Rh_2$, and CK shifted the steady-state activation curves but not the inactivation curves in the depolarizing direction in the ${\alpha}_{1B}$- and ${\alpha}_{1A}$-types. These results reveal that $Rg_3$, $Rh_2$ and CK are the major inhibitors of $Ca^{2+}$ channels in Panax ginseng, and that they show some $Ca^{2+}$ channel selectivity.

Protective Effect of Green Tea Extract on Amyloid $\beta$ peptide-induced Neurotoxicity (아밀로이드베타 펩타이드 유도성 신경세포독성에 대한 녹차 추출물의 보호 효과)

  • Kim, Young-In;Park, Jeong-Yoon;Choi, Soo-Jung;Kim, Jae-Kyeom;Jeong, Chang-Ho;Choi, Sung-Gil;Lee, Seung-Cheol;Cho, Sung-Hwan;Heo, Ho-Jin
    • Food Science and Preservation
    • /
    • v.15 no.5
    • /
    • pp.743-748
    • /
    • 2008
  • Amyloid $\beta$ peptide ($A{\beta}$) is known to increase oxidative stress in nerve cells, leading to apoptosis that is characterized by free radical formation and lipid peroxidation. Neurodegenerative diseases such as Alzheimer's disease (AD) are characterized by large deposits of $A{\beta}$ in the brain. In our study, neuronal protective effects of green tea, along with water activity (0.813), and leaf storage periods (fresh leaf, or leaf stored for up to 4 weeks) were investigated. We measured protective effects against $A{\beta}$-induced cytotoxicity in neuron-like PC12 cells. Powdered green tea was extracted with distilled water at $70^{\circ}C$ for 5 min, and this extract was freeze-dried and stored at $-20^{\circ}C$ until use. In cell viability assays using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), the fresh extract, and that obtained after 1 week of leaf storage, showed the best protective effects against $A{\beta}$-induced neurotoxicity. As oxidative stress causes membrane breakdown, the protective effect of green tea extracts was investigated using lactate dehydrogenase (LDH) and trypan blue exclusion assays. LDH release into the medium was inhibited (by 20-25%) in all tests. In addition, all green tea extracts (fresh, or stored before extraction for up to 4 weeks) showed better cell protective effects ($93.3{\pm}1.8-96.2{\pm}2.4$) than did vitamin C ($91.0{\pm}1.6$), used as a positive control. The results suggest that effectiveness of green tea extracts falls with prolonged leaf storage.

Autometallography for Zinc Detection in the Central Nervous System (중추신경계통내 분포하는 Zinc의 조직화학적 동정)

  • Jo, Seung-Mook;Gorm, Danscher;Kim, Sung-Jun;Park, Seung-Kook;Kang, Tae-Cheon;Won, Moo-Ho
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.347-355
    • /
    • 2000
  • Zinc is one of the most abundant oligoelements in the living cell. It appears tightly bound to some metalloproteins and nucleic acids, loosely bound to some metallothioneins or even as free ion. Small amounts of zinc ions (in the nanomolar range) regulate a plentitude of enzymatic proteins, receptors and transcription factors, thus rolls need accurate homeostasis of zinc ions. Zinc is an essential catalytic or structural element of many proteins, and a signaling messenger that is released by neural activity at many central excitatory synapses. Growing evidences suggest that zinc may also be a key mediator and modulator of the neuronal death associated with transient global ischemia and sustained seizures, as well as perhaps other neurological disease stoles. Some neurons have developed mechanisms to accumulate zinc in specific membrane compartment ('vesicular zinc') which can be evidenced using histochemical techniques. Substances giving a bright colour or emitting fluorescence when in contact with divalent metal ions are currently used to detect them inside cells; their use leads to the so called 'direct' methods. The fixation and precipitation of metal ions as insoluble salt precipitates, their maintenance along the histological process and, finally, their demonstration after autometallographic development are essential steps for other methods, the so called 'indirect methods'. This study is a short report on the autometallograhical approaches for zinc detection in the central nervous system (CNS) by means of a modified selenium method.

  • PDF