• Title/Summary/Keyword: Neuronal

Search Result 2,023, Processing Time 0.029 seconds

Expression profile identifies novel genes involved in neuronal differentiation

  • Kim, Jung-Hee;Lee, Tae-Young;Yoo, Kyung-Hyun;Lee, Hyo-Soo;Cho, Sun-A;Park, Jong-Hoon
    • BMB Reports
    • /
    • v.41 no.2
    • /
    • pp.146-152
    • /
    • 2008
  • In the presence of NGF, PC12 cells extend neuronal processes, cease cell division, become electrically excitable, and undergo several biochemical changes that are detectable in developing sympathetic neurons. We investigated the expression pattern of the apoptosis-related genes at each stage of neuronal differentiation using a cDNA microarray containing 320 apoptosis-related rat genes. By comparing the expression patterns through time-series analysis, we identified candidate genes that appear to regulate neuronal differentiation. Among the candidate genes, HO2 was selected by real-time PCR and Western blot analysis. To identify the roles of selected genes in the stages of neuronal differentiation, transfection of HO2 siRNA in PC12 cells was performed. Down-regulation of HO2 expression causes a reduction in neuronal differentiation in PC12 cells. Our results suggest that the HO2 gene could be related to the regulation of neuronal differentiation levels.

Ganglioside GT1b Mediates Neuronal Differentiation of Mouse Embryonic Stem Cells

  • Lee, So-Dam;Jin, Jung-Woo;Choi, Jin;Choo, Young-Kug
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.155-161
    • /
    • 2009
  • It has been reported that ganglioside GT1b is expressed during neuronal cell differentiation from undifferentiated mouse embryonic stem cells (mESCs), which suggests that ganglioside GT1b has a direct effect on neuronal cell differentiation. Therefore, this study was conducted to evaluate the effect of exogenous addition of ganglioside GT1b to an in vitro model of neuronal cell differentiation from undifferentiated mESCs. The results revealed that a significant increase in the expression of ganglioside GT1b occurred during neuronal differentiation of undifferentiated mESCs. Next, we evaluated the effect of retinoic acid (RA) on GT1b-treated undifferentiated mESCs, which was found to lead to increased neuronal differentiation. Taken together, the results of this study suggest that ganglioside GT1b plays a crucial role in neuronal differentiation of mESCs.

  • PDF

Neuronal function and dysfunction of CYFIP2: from actin dynamics to early infantile epileptic encephalopathy

  • Zhang, Yinhua;Lee, Yeunkum;Han, Kihoon
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.304-311
    • /
    • 2019
  • The cytoplasmic FMR1-interacting protein family (CYFIP1 and CYFIP2) are evolutionarily conserved proteins originally identified as binding partners of the fragile X mental retardation protein (FMRP), a messenger RNA (mRNA)-binding protein whose loss causes the fragile X syndrome. Moreover, CYFIP is a key component of the heteropentameric WAVE regulatory complex (WRC), a critical regulator of neuronal actin dynamics. Therefore, CYFIP may play key roles in regulating both mRNA translation and actin polymerization, which are critically involved in proper neuronal development and function. Nevertheless, compared to CYFIP1, neuronal function and dysfunction of CYFIP2 remain largely unknown, possibly due to the relatively less well established association between CYFIP2 and brain disorders. Despite high amino acid sequence homology between CYFIP1 and CYFIP2, several in vitro and animal model studies have suggested that CYFIP2 has some unique neuronal functions distinct from those of CYFIP1. Furthermore, recent whole-exome sequencing studies identified de novo hot spot variants of CYFIP2 in patients with early infantile epileptic encephalopathy (EIEE), clearly implicating CYFIP2 dysfunction in neurological disorders. In this review, we highlight these recent investigations into the neuronal function and dysfunction of CYFIP2, and also discuss several key questions remaining about this intriguing neuronal protein.

Cellular and Molecular Pathways of Ischemic Neuronal Death

  • Won, Seok-Joon;Kim, Doo-Yeon;Gwag, Byoung-Joo
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.67-86
    • /
    • 2002
  • Three routes have been identified triggering neuronal death under physiological and pathological conditions. Excess activation of ionotropic glutamate receptors cause influx and accumulation of $Ca^{2+}$ and $Na^+$ that result in rapid swelling and subsequent neuronal death within a few hours. The second route is caused by oxidative stress due to accumulation of reactive oxygen and nitrogen species. Apoptosis or programmed cell death that often occurs during developmental process has been coined as additional route to pathological neuronal death in the mature nervous system. Evidence is being accumulated that excitotoxicity, oxidative stress, and apoptosis propagate through distinctive and mutually exclusive signal transduction pathway and contribute to neuronal loss following hypoxic-ischemic brain injury. Thus, the therapeutic intervention of hypoxic-ischemic neuronal injury should be aimed to prevent excitotoxicity, oxidative stress, and apoptosis in a concerted way.

Neuronal Activity-Dependent Regulation of MicroRNAs

  • Sim, Su-Eon;Bakes, Joseph;Kaang, Bong-Kiun
    • Molecules and Cells
    • /
    • v.37 no.7
    • /
    • pp.511-517
    • /
    • 2014
  • MicroRNAs are non-coding short (~23 nucleotides) RNAs that mediate post-transcriptional regulation through sequence-specific gene silencing. The role of miRNAs in neuronal development, synapse formation and synaptic plasticity has been highlighted. However, the role of neuronal activity on miRNA regulation has been less focused. Neuronal activity-dependent regulation of miRNA may finetune gene expression in response to synaptic plasticity and memory formation. Here, we provide an overview of miRNA regulation by neuronal activity including high-throughput screening studies. We also discuss the possible molecular mechanisms of activity-dependent induction and turnover of miRNAs.

Neuronal Autophagy: Characteristic Features and Roles in Neuronal Pathophysiology

  • Valencia, McNeil;Kim, Sung Rae;Jang, Yeseul;Lee, Sung Hoon
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.605-614
    • /
    • 2021
  • Autophagy is an important degradative pathway that eliminates misfolded proteins and damaged organelles from cells. Autophagy is crucial for neuronal homeostasis and function. A lack of or deficiency in autophagy leads to the accumulation of protein aggregates, which are associated with several neurodegenerative diseases. Compared with non-neuronal cells, neurons exhibit rapid autophagic flux because damaged organelles or protein aggregates cannot be diluted in post-mitotic cells; because of this, these cells exhibit characteristic features of autophagy, such as compartment-specific autophagy, which depends on polarized structures and rapid autophagy flux. In addition, neurons exhibit compartment-specific autophagy, which depends on polarized structures. Neuronal autophagy may have additional physiological roles other than amino acid recycling. In this review, we focus on the characteristics and regulatory factors of neuronal autophagy. We also describe intracellular selective autophagy in neurons and its association with neurodegenerative diseases.

Neuroprotective Effects of Daebowonjeon on PC12 Cells Exposed to Ischemia (허혈 상태의 PC12 세포에 대한 대보원전(大補元煎)의 신경보호효과)

  • Kim, Bong-Sang;Lee, Sun-Woo;Moon, Byung-Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.117-125
    • /
    • 2007
  • Neuronal ischemia is a pathological process caused by a lack of oxygen (anoxia) and glucose (hypoglycemia), resulting in neuronal death. It is believed that apoptosis is one of the mechanisms involved in ischemic cell death. Neuronal apoptosis is a process characterized by nuclear DNA fragmentation, changes of plasma membrane organization. To elucidate the mechanism of neuronal death following ischemic insult and to develop neuroprotective effects of Daebowonjeon(DBWJ) against ischemic damage, in vitro models are used. In vitro models of cell death have been devloped with pheochromocytoma (PC12) cell, which have become widely used as neuronal models of oxidative stress, trophic factor, serum deprivation and chemical hypoxia. Using a special ischemic device and PC12 cultures, we investigated an in vitro model of ischemia based on combined Oxygen and Glucose Deprivation (OGD) insult, followed by reoxygenation, mimicking the pathological conditions of ischemia. In this study, Daebowonjeon rescued PC12 cells from Oxygen-Glucose Deprivation (OGD)-induced cell death in a dose-dependent manner The nuclear staining of PC12 cells clearly showed that DBWJ attenuated nuclear condensation and fragmentation which represent typical neuronal apoptotic characteristics. DBWJ also prevents the LDH release and induction of Hypoxia Inducing Factor (HIF)-1 by OGD-exposed PC12 cells. Furthermore, DBWJ reduced the activation of polyADP-ribose polymerase (PARP) by OGO-exposed PC12 cells. These results suggest that apoptosis is an important characteristic of OGD-induced neuronal death and that oriental medicine, such as DBWJ, may prevent PC12 cell from OG D-induced neuronal death by inhibiting the apoptotic process.

Morphine-induced Modulation of Nociceptive Spinal Dorsal Horn Neuronal Activities after Formalin-induced Inflammatory Pain

  • Park, Joo-Min;Li, Kang-Wu;Jung, Sung-Jin;Kim, Jun;Kim, Sang-Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.2
    • /
    • pp.77-86
    • /
    • 2005
  • In this study, we examined the morphine-induced modulation of the nociceptive spinal dorsal horn neuronal activities before and after formalin-induced inflammatory pain. Intradermal injection of formalin induced time-dependent changes in the spontaneous activity of nociceptive dorsal horn neurons. In naive cats before the injection of formalin, iontophoretically applied morphine attenuated the naturally and electrically evoked neuronal responses of dorsal horn neurons. However, neuronal responses after the formalin-induced inflammation were significantly increased by morphine. Bicuculline, $GABA_A$ antagonist, increased the naturally and electrically evoked neuronal responses of dorsal horn neurons. This increase in neuronal responses due to bicuculline after the formalin-induced inflammation was larger than that in the naive state, suggesting that basal $GABA_A$ tone increased after the formalin injection. Muscimol, $GABA_A$ agonist, reduced the neuronal responses before the treatment with formalin, but not after formalin treatment, again indicating an increase in the GABAergic basal tone after the formalin injection which saturated the neuronal responses to GABA agonist. Morphine-induced increase in the spinal nociceptive responses after formalin treatment was inhibited by co-application of muscimol. These data suggest that formalin-induced inflammation increases $GABA_A$ basal tone and the inhibition of this augmented $GABA_A$ basal tone by morphine results in a paradoxical morphineinduced increase in the spinal nociceptive neuronal responses after the formalin-induced inflammation.

Critical role of protein L-isoaspartyl methyltransferase in basic fibroblast growth factor-mediated neuronal cell differentiation

  • Dung, To Thi Mai;Yi, Young-Su;Heo, Jieun;Yang, Woo Seok;Kim, Ji Hye;Kim, Han Gyung;Park, Jae Gwang;Yoo, Byong Chul;Cho, Jae Youl;Hong, Sungyoul
    • BMB Reports
    • /
    • v.49 no.8
    • /
    • pp.437-442
    • /
    • 2016
  • We aimed to study the role of protein L-isoaspartyl methyltransferase (PIMT) in neuronal differentiation using basic fibroblast growth factor (bFGF)-induced neuronal differentiation, characterized by cell-body shrinkage, long neurite outgrowth, and expression of neuronal differentiation markers light and medium neurofilaments (NF). The bFGF-mediated neuronal differentiation of PC12 cells was induced through activation of mitogen-activated protein kinase (MAPK) signaling molecules [MAPK kinase 1/2 (MEK1/2), extracellular signal-regulated kinase 1/2 (ERK1/2), and p90RSK], and phosphatidylinositide 3-kinase (PI3K)/Akt signaling molecules PI3Kp110β, PI3Kp110γ, Akt, and mTOR. Inhibitors (adenosine dialdehyde and S-adenosylhomocysteine) of protein methylation suppressed bFGF-mediated neuronal differentiation of PC12 cells. PIMT-eficiency caused by PIMT-specific siRNA inhibited neuronal differentiation of PC12 cells by suppressing phosphorylation of MEK1/2 and ERK1/2 in the MAPK signaling pathway and Akt and mTOR in the PI3K/Akt signaling pathway. Therefore, these results suggested that PIMT was critical for bFGF-mediated neuronal differentiation of PC12 cells and regulated the MAPK and Akt signaling pathways.

NELL2 Function in Axon Development of Hippocampal Neurons

  • Kim, Han Rae;Kim, Dong Hee;An, Ji Young;Kang, Dasol;Park, Jeong Woo;Hwang, Eun Mi;Seo, Eun Jin;Jang, Il Ho;Ha, Chang Man;Lee, Byung Ju
    • Molecules and Cells
    • /
    • v.43 no.6
    • /
    • pp.581-589
    • /
    • 2020
  • Neurons have multiple dendrites and single axon. This neuronal polarity is gradually established during early processes of neuronal differentiation: generation of multiple neurites (stages 1-2); differentiation (stage 3) and maturation (stages 4-5) of an axon and dendrites. In this study, we demonstrated that the neuron-specific n-glycosylated protein NELL2 is important for neuronal polarization and axon growth using cultured rat embryonic hippocampal neurons. Endogenous NELL2 expression was gradually increased in parallel with the progression of developmental stages of hippocampal neurons, and overexpression of NELL2 stimulated neuronal polarization and axon growth. In line with these results, knockdown of NELL2 expression resulted in deterioration of neuronal development, including inhibition of neuronal development progression, decreased axon growth and increased axon branching. Inhibitor against extracellular signal-regulated kinase (ERK) dramatically inhibited NELL2-induced progression of neuronal development and axon growth. These results suggest that NELL2 is an important regulator for the morphological development for neuronal polarization and axon growth.