본 연구에서는 뉴런이 지니는 기능 및 결합구조를 모사하여 $3{\times}3$ 배열의 기능별로 분리시킨 후 디지털회로에서 동작 중 발생할 수 있는 일시적 또는 영구적인 오류 위치를 정확히 찾아내어 복구 시키는 알고리즘을 제안한다. 결합된 세포에서 어느 특정 일부분이 문제가 발생할 경우 그 기능을 다른 세포로 분화되어 동일 기능을 수행하며 오류가 발생한 세포는 주변 세포에 의해 사멸시키는 단계를 거친다. 이런 세포가 지니는 기능 및 구조를 디지털 회로내부에 기능 블록구조로 설계하여 알고리즘을 제안하였다. 본 연구에서 고려한 1번 블록의 4번 모듈이 오류가 발생했을 경우가로 방향에 대한 전체 모듈번호에 대한 합, 세로 방향에 대한 전체 모듈 번호 합, 대각선 방향에 대한 전체 모듈 번호의 합을 이용하여 쉽게 그 위치를 찾을 수 있었다.
This paper presents a new method to implement Hebbian learning method on artificial neural network. In hebbian learning algorithm, complexity in terms of multiplications is high. To save the chip area, we consider a new learning circuit. By calculating similarity, or correlation between $X_i$ and $O_i$, large portion of circuits commonly used in conventional neural networks is not necessary for this new hebbian learning circuit named COR. The output signals of COR is applied to weight storage capacitors for direct control the voltages of the capacitors. The weighted sum, ${\Sigma}W_{ij}O_j$, is realized by multipliers, whose output currents are summed up in one line which goes to learning circuit or output circuit. The drain current of the multiplier can produce positive or negative synaptic weights. The pass transistor selects eight learning mode or recall mode. The layout of an learnable six-neuron fully connected Hopfield neural network is designed, and is simulated using PSPICE. The network memorizes, and retrieves the patterns correctly under the existence of minor noises.
본 연구에서는 MFSFET (Metal-Ferroelectric-Semiconductor FET) 소자의 모델링을 바탕으로 adaptive learning 회로를 설계하고, 그 수치적인 결과를 분석하였다. Adaptive learning 회로에서 출력주파수는 MFSFET 소자의 소스-드레인 저항과 캐패시턴스에 반비례하는 특성을 보여주었다. Short pulse 수에 따른 포화드레인 전류곡선은 강유전체의 분극반전 특성과 유사함을 확인할 수 있었고, 이는 강유전체 분극이 MFSFET 소자의 드레인 전류조절에 핵심적인 요소로 작용한다는 사실을 의미한다. 다음으로 MFSFET 소자의 드레인 전류조절에 핵심적인 요소로 작용한다는 사실을 의미한다. 다음으로 MFSFET 소자의 소스-드레인 저항으로부터 dimensionality factor 와 adaptive learning 회로의 펄스 수에 따른 출력주파수 변화를 분석하였다. 이 특성으로부터, adaptive learning 회로의 주파수변조 특성 즉, 입력펄스의 진행에 따라 출력펄스의 점진적인 주파수 변화를 의미하는 adaptive learning 특성을 명화하게 확인할 수 있었고, 뉴럴 네트워크에서 본 회로가 뉴런의 시넵스 부분에 효과적으로 사용될 수 있음을 입증하였다.
본 논문에서는 3치 논리 게이트, 3치 D 플립플롭과 3치 4-디지트 병렬 입력/출력 레지스터를 제안하였다. 3치 논리 게이트는 n 채널 패스 트랜지스터와 뉴런 MOS(νMOS) 임계 인버터로 구성된다. 3치 논리 게이트들은 다양한 임계 전압을 갖는 다운 리터럴 회로를 사용하였고 전송함수를 바탕으로 설계되었다. 뉴런 MOS 트랜지스터는 다치 논리 구현에 가장 적합한 게이트이고 다양한 레벨의 입력 신호를 갖는다. 3치 D 플립 플롭과 3치 레지스터는 3치 데이터를 임시로 저장할 수 있는 저장 장치로 사용할 수 있다. 본 논문에서는 3.3V의 전원 전압을 사용하였고 0.35um 공정 파라미터를 이용하여 모의 실험을 통해 그 결과를 HSPICE로 검증하였다.
Park, Jungjin;Kim, Hyungjin;Kwon, Min-Woo;Hwang, Sungmin;Baek, Myung-Hyun;Lee, Jeong-Jun;Jang, Taejin;Park, Byung-Gook
JSTS:Journal of Semiconductor Technology and Science
/
제17권2호
/
pp.210-215
/
2017
We have developed the neuromorphic system that can work with the four-terminal Si-based synaptic devices and verified the operation of the system using simulation tool and printed-circuit-board (PCB). The symmetrical current mirrors connected to the n-channel and p-channel synaptic devices constitute the synaptic integration part to express the excitation and the inhibition mechanism of neurons, respectively. The number and the weight of the synaptic devices affect the amount of the current reproduced from the current mirror. The double-stage inverters controlling delay time and the NMOS with large threshold voltage ($V_T$) constitute the action-potential generation part. The generated action-potential is transmitted to next neuron and simultaneously returned to the back gate of the synaptic device for changing its weight based on spike-timing-dependent-plasticity (STDP).
본 연구에서는 MFSFET (Metal-Ferroelectric-Semiconductor FET) 소자의 모델링을 바탕으로 적응형 학습회로를 설계하고, 그 수치적인 결과를 분석하였다. 적응형 학습회로에서 출력주파수는 MFSFET 소자의 소스-드레인 저항과 캐패시턴스에 반비례하는 특성을 보여주었다. Short pulse 수에 따른 포화드레인 전류곡선은 강유전체의 분극반전 특성과 유사함을 확인할 수 있었고, 이는 강유전체 분극이 MFSFET 소자의 드레인 전류조절에 핵심적인 요소로 작용한다는 사실을 의미한다. 다음으로 MFSFET 소자의 소스-드레인 저항으로부터 dimensionality factor와 적응형 학습회로의 펄스 수에 따른 출력주파수 변화를 분석하였다. 이 특성으로부터 입력펄스의 진행에 따라 출력펄스의 점진적인 주파수 변화를 의미하는 적응형 학습 특성을 명확하게 확인할 수 있었고, 미래 뉴럴 네트워크에서 본 회로가 뉴런의 시넵스 부분에 효과적으로 사용될 수 있음을 입증하였다.
본 논문에서는 캐리전파가 없어 고속연산이 가능한 잉여 수 체계(Residue Number System)를 이용하여 생산자동화 시스템에서 실시간 물체인식을 위한 고속의 디지털 뉴런 프로세서를 제안하고 이를 구현하기 위한 중요연산부인 PE를 설계 및 구현하였다. 설계된 디지털 뉴런프로세서는 잉여수계를 이용한 MAC(Multiplier and Accumulator)연산기와 혼합계수 변환을 이용한 시그모이드 함수 연산부로 구성된다. 설계된 회로는 C언어 및 VHDL로 기술하였고 Compass툴로 합성하였으며 LG $0.8{\mu}m$ CMOS공정으로 설계되었다. 실험결과 본 논문에서 설계 및 구현한 디지털 뉴런프로세서는 기존 방식의 잉여수계를 이용한 연산기 및 실수연산기로 구현한 뉴런프로세서에 비하여 3배 이상의 연산속도와 약 50%정도 하드웨어 크기를 줄일 수 있었다. 본 논문에서 설계 및 구현한 디지털 뉴런프로세서는 실시간 처리를 요하는 생산자동화 시스템의 물체인식 시스템에 적용될 수 있을 것으로 기대된다.
이 연구는 뇌과학과 교육을 접목하는 교육신경학의 관점에 기초한 연구이다. 이 관점에 기초하여 디지털 학습자료 활용의 뇌과학적 근거를 확인함과 아울러 교육적 시사점을 도출하는 것을 연구의 목적으로 하였다. 이 연구에서 얻어진 결과를 결론으로 제시하면, 다음과 같다. 첫째, 디지털 학습자료를 통한 다양한 감각 자극은 다중감각신경, 상구 심층부 등을 거치며 협동적 정보처리를 가능하게 한다. 둘째, 디지털 학습자료로 인한 간접경험은 거울신경계를 거쳐 학습 내용을 생생하게 이해하도록 도와준다. 셋째, 디지털 학습자료들이 일으킨 긍정적인 감정은 도파민, 망상활성체계, 전두 선조체, 대뇌 피질 등의 기능을 활성화시켜 준다. 이 연구의 결과를 통해 제시되는 교육적 시사점은 다음과 같다. 첫째, 교사는 디지털 학습자료를 선정할 때 표현 양식, 학습 내용, 수업의 흐름 및 역기능 측면까지 고려해야 한다. 둘째, 수업 장면에 따라 다양한 디지털 학습자료를 호기심과 즐거움의 유발, 흥미와 노력의 유지, 학습한 내용에 대한 복습의 목적으로 사용하는 것은 수업 효과를 위해 바람직하다.
본 논문에서는 전압모드를 기초로 한 2진-4치 상호 변환기와 논리 게이트의 기본 소자라고 할 수 있는 4치 인버터회로를 설계하였다. 2진-4치 변환기는 2비트의 2진 신호를 입력으로 하여 1디지트의 4치 신호를 출력하는 회로이고 4치-2진 변환기는 1디지트의 4치 신호를 받아들여 2비트의 2진 신호를 출력하는 회로이며 Down-literal Circuit(DLC)블록과 2진 조합회로(CLC : Combinational Logic Circuit)블록으로 구성된다. 4치 인버터회로를 구현함에 있어서는 기준전압 생성 및 제어신호 생성을 모두 DLC를 사용하고 스위치 부분만을 일반 MOS로 사용하여 설계하였다. 설계된 회로들은 +3V 단일 공급 전원에서 0.35㎛ N-well doubly-poly four-metal CMOS technology의 파라미터를 사용한 Hspice를 이용하여 모의 실험을 하였다. 모의 실험 결과는 샘플링 레이트가 250MHz, 소비 전력은 0.6mW, 출력은 0.1V이내의 범위에서 전압레벨을 유지하는 결과를 보였다.
Finding the optimum route of ship's pipes is complicated and time-consuming process. Experience of designers is the main tool in this process. To reduce design man-hours and human errors a design expert system shell and a geometric modeler is used to automate the design process. In this paper, a framework of the intelligent CAD system for pipe auto-routing is suggested, which consists of general-purpose expert system shell and a geometric modeler. The design expert system and the geometric modeling kernel have been integrated. The CADDS5 of Computervision is used as the overall CAD environment. The Nexpert Object of Neuron Data is used as the expert system shell. The CADDS5 ISSM is used as the interface that creates and modifies geometric models of pipes. Existing algorithms for the routing problem have been analyzed. Most of them are to solve the 2-D circuit routing problems. Ship piping system, specially within the engine room, is a complicated, large scale 3-D routing problem. Methods of expert system have been used to find the route of ship pipes on the main deck.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.