• Title/Summary/Keyword: Neuromorphic

Search Result 49, Processing Time 0.023 seconds

Memristors based on Al2O3/HfOx for Switching Layer Using Single-Walled Carbon Nanotubes (단일 벽 탄소 나노 튜브를 이용한 스위칭 레이어 Al2O3/HfOx 기반의 멤리스터)

  • DongJun, Jang;Min-Woo, Kwon
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.633-638
    • /
    • 2022
  • Rencently, neuromorphic systems of spiking neural networks (SNNs) that imitate the human brain have attracted attention. Neuromorphic technology has the advantage of high speed and low power consumption in cognitive applications and processing. Resistive random-access memory (RRAM) for SNNs are the most efficient structure for parallel calculation and perform the gradual switching operation of spike-timing-dependent plasticity (STDP). RRAM as synaptic device operation has low-power processing and expresses various memory states. However, the integration of RRAM device causes high switching voltage and current, resulting in high power consumption. To reduce the operation voltage of the RRAM, it is important to develop new materials of the switching layer and metal electrode. This study suggested a optimized new structure that is the Metal/Al2O3/HfOx/SWCNTs/N+silicon (MOCS) with single-walled carbon nanotubes (SWCNTs), which have excellent electrical and mechanical properties in order to lower the switching voltage. Therefore, we show an improvement in the gradual switching behavior and low-power I/V curve of SWCNTs-based memristors.

Reduction of Inference time in Neuromorphic Based Platform for IoT Computing Environments (IoT 컴퓨팅 환경을 위한 뉴로모픽 기반 플랫폼의 추론시간 단축)

  • Kim, Jaeseop;Lee, Seungyeon;Hong, Jiman
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2022
  • The neuromorphic architecture uses a spiking neural network (SNN) model to derive more accurate results as more spike values are accumulated through inference experiments. When the inference result converges to a specific value, even if the inference experiment is further performed, the change in the result is smaller and power consumption may increase. In particular, in an AI-based IoT environment, power consumption can be a big problem. Therefore, in this paper, we propose a technique to reduce the power consumption of AI-based IoT by reducing the inference time by adjusting the inference image exposure time in the neuromorphic architecture environment. The proposed technique calculates the next inferred image exposure time by reflecting the change in inference accuracy. In addition, the rate of reflection of the change in inference accuracy can be adjusted with a coefficient value, and an optimal coefficient value is found through a comparison experiment of various coefficient values. In the proposed technique, the inference image exposure time corresponding to the target accuracy is greater than that of the linear technique, but the overall power consumption is less than that of the linear technique. As a result of measuring and evaluating the performance of the proposed method, it is confirmed that the inference experiment applying the proposed method can reduce the final exposure time by about 90% compared to the inference experiment applying the linear method.

New Memristor-Based Crossbar Array Architecture with 50-% Area Reduction and 48-% Power Saving for Matrix-Vector Multiplication of Analog Neuromorphic Computing

  • Truong, Son Ngoc;Min, Kyeong-Sik
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.356-363
    • /
    • 2014
  • In this paper, we propose a new memristor-based crossbar array architecture, where a single memristor array and constant-term circuit are used to represent both plus-polarity and minus-polarity matrices. This is different from the previous crossbar array architecture which has two memristor arrays to represent plus-polarity and minus-polarity connection matrices, respectively. The proposed crossbar architecture is tested and verified to have the same performance with the previous crossbar architecture for applications of character recognition. For areal density, however, the proposed crossbar architecture is twice better than the previous architecture, because only single memristor array is used instead of two crossbar arrays. Moreover, the power consumption of the proposed architecture can be smaller by 48% than the previous one because the number of memristors in the proposed crossbar architecture is reduced to half compared to the previous crossbar architecture. From the high areal density and high energy efficiency, we can know that this newly proposed crossbar array architecture is very suitable to various applications of analog neuromorphic computing that demand high areal density and low energy consumption.

Low Power Neuromorphic Hardware Design and Implementation Based on Asynchronous Design Methodology (비동기 설계 방식기반의 저전력 뉴로모픽 하드웨어의 설계 및 구현)

  • Lee, Jin Kyung;Kim, Kyung Ki
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.68-73
    • /
    • 2020
  • This paper proposes an asynchronous circuit design methodology using a new Single Gate Sleep Convention Logic (SG-SCL) with advantages such as low area overhead, low power consumption compared with the conventional null convention logic (NCL) methodologies. The delay-insensitive NCL asynchronous circuits consist of dual-rail structures using {DATA0, DATA1, NULL} encoding which carry a significant area overhead by comparison with single-rail structures. The area overhead can lead to high power consumption. In this paper, the proposed single gate SCL deploys a power gating structure for a new {DATA, SLEEP} encoding to achieve low area overhead and low power consumption maintaining high performance during DATA cycle. In this paper, the proposed methodology has been evaluated by a liquid state machine (LSM) for pattern and digit recognition using FPGA and a 0.18 ㎛ CMOS technology with a supply voltage of 1.8 V. the LSM is a neural network (NN) algorithm similar to a spiking neural network (SNN). The experimental results show that the proposed SG-SCL LSM reduced power consumption by 10% compared to the conventional LSM.

Mott-Insulator Metal Switching Technology for New Concept Devices (신개념 스위칭 소자를 위한 모트-절연체 금속 전이 기술)

  • Kim, H.T.;Roh, T.M.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.34-40
    • /
    • 2021
  • For developing a switching device of a new concept that cannot be implemented with a semiconductor device, we introduce the Mott insulator-metal transition (IMT) phenomenon occurring out of the semiconductor regime, such as the temperature-driven IMT, the electric-field or voltage-driven IMT, the negative differential resistance (NDR)-IMT switching generated at constant current, and the NDR-based IMT-oscillation. Moreover, the possibilities of new concept IMT switching devices are briefly explained.

Ultra-Low Powered CNT Synaptic Transistor Utilizing Double PI:PCBM Dielectric Layers (더블 PI:PCBM 유전체 층 기반의 초 저전력 CNT 시냅틱 트랜지스터)

  • Kim, Yonghun;Cho, Byungjin
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.590-596
    • /
    • 2017
  • We demonstrated a CNT synaptic transistor by integrating 6,6-phenyl-C61 butyric acid methyl ester(PCBM) molecules as charge storage molecules in a polyimide(PI) dielectric layer with carbon nanotubes(CNTs) for the transistor channel. Specifically, we fabricated and compared three different kinds of CNT-based synaptic transistors: a control device with $Al_2O_3/PI$, a single PCBM device with $Al_2O_3/PI:PCBM$(0.1 wt%), and a double PCBM device with $Al_2O_3/PI:PCBM$(0.1 wt%)/PI:PCBM(0.05 wt%). Statistically, essential device parameters such as Off and On currents, On/Off ratio, device yield, and long-term retention stability for the three kinds of transistor devices were extracted and compared. Notably, the double PCBM device exhibited the most excellent memory transistor behavior. Pulse response properties with postsynaptic dynamic current were also evaluated. Among all of the testing devices, double PCBM device consumed such low power for stand-by and its peak current ratio was so large that the postsynaptic current was also reliably and repeatedly generated. Postsynaptic hole currents through the CNT channel can be generated by electrons trapped in the PCBM molecules and last for a relatively short time(~ hundreds of msec). Under one certain testing configuration, the electrons trapped in the PCBM can also be preserved in a nonvolatile manner for a long-term period. Its integrated platform with extremely low stand-by power should pave a promising road toward next-generation neuromorphic systems, which would emulate the brain power of 20 W.

Simulation Study on Silicon-Based Floating Body Synaptic Transistor with Short- and Long-Term Memory Functions and Its Spike Timing-Dependent Plasticity

  • Kim, Hyungjin;Cho, Seongjae;Sun, Min-Chul;Park, Jungjin;Hwang, Sungmin;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.5
    • /
    • pp.657-663
    • /
    • 2016
  • In this work, a novel silicon (Si) based floating body synaptic transistor (SFST) is studied to mimic the transition from short-term memory to long-term one in the biological system. The structure of the proposed SFST is based on an n-type metal-oxide-semiconductor field-effect transistor (MOSFET) with floating body and charge storage layer which provide the functions of short- and long-term memories, respectively. It has very similar characteristics with those of the biological memory system in the sense that the transition between short- and long-term memories is performed by the repetitive learning. Spike timing-dependent plasticity (STDP) characteristics are closely investigated for the SFST device. It has been found from the simulation results that the connectivity between pre- and post-synaptic neurons has strong dependence on the relative spike timing among electrical signals. In addition, the neuromorphic system having direct connection between the SFST devices and neuron circuits are designed.

Electrolyte-gated Transistors for the Next-generation Smart Electronics (차세대 스마트 전자를 위한 전기화학 트랜지스터)

  • Kwon, Hyeok-jin;Kim, Se Hyun
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • In this report, we summarize recent progress in the development of electrolyte-gated transistors (EGTs) for various printed electronics. EGTs, employing a high capacitance electrolyte as gate dielectric layer in transistors, exhibits increasing of drive current, lowering operation voltage, and new transistor architectures. While the use of electrolytes in electronics goes back to the early days of silicon transistors, the new printable, fast-responsive polymer electrolytes are expanding their range of applications from printable and flexible digital circuits to various neuromorphic devices. This report introduces the structure and operating mechanism of EGT and reviews key developments in electrolyte materials used in printed electronics. Additionally, we will look at various applications with EGTs that are currently underway.

An analysis of learning performance changes in spiking neural networks(SNN) (Spiking Neural Networks(SNN) 구조에서 뉴런의 개수와 학습량에 따른 학습 성능 변화 분석)

  • Kim, Yongjoo;Kim, Taeho
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.463-468
    • /
    • 2020
  • Artificial intelligence researches are being applied and developed in various fields. In this paper, we build a neural network by using the method of implementing artificial intelligence in the form of spiking natural networks (SNN), the next-generation of artificial intelligence research, and analyze how the number of neurons in that neural networks affect the performance of the neural networks. We also analyze how the performance of neural networks changes while increasing the amount of neural network learning. The findings will help optimize SNN-based neural networks used in each field.