• Title/Summary/Keyword: NeuroIS

Search Result 986, Processing Time 0.022 seconds

A generalized ANFIS controller for vibration mitigation of uncertain building structure

  • Javad Palizvan Zand;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • v.87 no.3
    • /
    • pp.231-242
    • /
    • 2023
  • A novel combinatorial type-2 adaptive neuro-fuzzy inference system (T2-ANFIS) and robust proportional integral derivative (PID) control framework for intelligent vibration mitigation of uncertain structural system is introduced. The fuzzy logic controllers (FLCs), are designed independently of the mathematical model of the system. The type-1 FLCs, have a limited ability to reduce the effect of uncertainty, due to their fuzzy sets with a crisp degree of membership. In real applications, the consequent part of the fuzzy rules is uncertain. The type-2 FLCs, are robust to the fuzzy rules and the process parameters due to the fuzzy degree of membership functions and footprint of uncertainty (FOU). The adaptivity of the proposed method is provided with the optimum tuning of the parameters using the neural network training algorithms. In our approach, the PID control force is obtained using the generalized type-2 neuro-fuzzy in such a way that the stability and robustness of the controller are guaranteed. The robust performance and stability of the presented framework are demonstrated in a numerical study for an eleven-story seismically-excited building structure combined with an active tuned mass damper (ATMD). The results indicate that the introduced type-2 neuro-fuzzy PID control scheme is effective to attenuate plant states in the presence of the structured and unstructured uncertainties, compared to the conventional, type-1 FLC, type-2 FLC, and type-1 neuro-fuzzy PID controllers.

An Adaptive Neuro-Fuzzy System Using Fuzzy Min-Max Networks (퍼지 Min-Max 네트워크를 이용한 적응 뉴로-퍼지 시스템)

  • 곽근창;김성수;김주식;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.367-367
    • /
    • 2000
  • In this paper, an Adaptive neuro-fuzzy Inference system(ANFIS) using fuzzy min-max network(FMMN) is proposed. Fuzzy min-max network classifier that utilizes fuzzy sets as pattern classes is described. Each fuzzy set is an aggregation of fuzzy set hyperboxes. Here, the proposed method transforms the hyperboxes into gaussian membership functions, where the transformed membership functions are inserted for generating fuzzy rules of ANFIS. Finally, we applied the proposed method to the classification problem of iris data and obtained a better performance than previous works.

  • PDF

The Adaptive-Neuro Control of Robot Manipulator Using DSPs (디지털 시그널 프로세서를 이용한 로봇 매니퓰레이터의 적응-신경제어)

  • Cha, Bo-Ram;Kim, Seong-Il;Lee, Jin;Lee, Chi-U;Han, Seong-Hyeon
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.122-127
    • /
    • 2001
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique for real-time control of robot system using DSPs.

  • PDF

Object Recognition Using Neuro-Fuzzy Inference System (뉴로-퍼지 추론 시스템을 이용한 물체인식)

  • 김형근;최갑석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.5
    • /
    • pp.482-494
    • /
    • 1992
  • In this paper, the neuro-fuzzy inferene system for the effective object recognition is studied. The proposed neuro-fuzzy inference system combines learning capability of neural network with inference process of fuzzy theory, and the system executes the fuzzy inference by neural network automatically. The proposed system consists of the antecedence neural network, the consequent neural network, and the fuzzy operational part, For dissolving the ambiguity of recognition due to input variance in the neuro-fuzzy inference system, the antecedence’s fuzzy proposition of the inference rules are automatically produced by error back propagation learining rule. Therefore, when the fuzzy inference is made, the shape of membership functions os adaptively modified according to the variation. The antecedence neural netwerk constructs a separated MNN(Model Classification Neural Network)and LNN(Line segment Classification Neural Networks)for dissolving the degradation of recognition rate. The antecedence neural network can overcome the limitation of boundary decisoion characteristics of nrural network due to the similarity of extracted features. The increased recognition rate is gained by the consequent neural network which is designed to learn inference rules for the effective system output.

  • PDF

Indirect Neuro-Control of Nonlinear Multivariable Servomechanisms (비선형 다변수 시스템의 간접신경망제어)

  • Jang, Jun-Oh;Lee, Pyeong-Gi
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.5
    • /
    • pp.14-22
    • /
    • 2001
  • This paper presents identification and control designs using neural networks for a class of multivariable nonlinear servomechanisms. A proposed neuro-controller is a combination of linear controllers and a neural network, and is trained by indirect neuro-control scheme. The proposed neuro-controller is implemented and tested on an IBM PC-based two 2 bar systems holding an object, and is applicable to many de-motor-driven precision multivariable nonlinear servomechanisms. The ideas, algorithm, and experimental results arc described. Moreover, experimental results are shown to be superior to those of conventional control.

  • PDF

Intelligent Control of Robot Manipulator Using DSPs(TMS320C80) (DSPs(TMS320C80)을 이용한 로봇 매니퓰레이터의 지능제어)

  • 이우송;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.219-226
    • /
    • 2003
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory fir the adaptive control of linear systems, there exists relatively little general theory fir the adaptive control of nonlinear systems. Adaptive control technique is essential fir providing a stable and robust performance fir application of robot control. The proposed neuro control algorithm is one of teaming a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique f3r real-time control of robot system using DSPs.

  • PDF

Path Control for NeuroMate Robot in a Skull Drilling System (두개골 천공을 위한 NeuroMate 로봇의 경로 제어)

  • Chung, Yun-Chan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.256-262
    • /
    • 2013
  • This paper presents a linear path control algorithm for NeuroMate robot in a skull drilling system. For the path control inverse kinematics of the robot is analyzed and a linear interpolation algorithm is presented. A geometric approach is used for solving inverse kinematic equations for the robot. Four feasible solutions are found through the approach. The approach gives geometric insights for selecting the best solution from the feasible solutions. The presented linear interpolation algorithm computes a next position considering current velocity and remaining distance to the target position. Presented algorithm is implemented and tested in a skull drilling system.

Robust Control of Robot Manipulator Based-on DSPs(TMS320C50) (DSPs(TMS320C50)을 이용한 로봇 매니퓰레이터의 견실제어)

  • 이우송;김종수;김홍래;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.193-200
    • /
    • 2004
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique for real-time control of robot system using DSPs.

  • PDF

Design of Improved Neuro-Fuzzy Controller for the Development of Fast Response and Stability of DC Servo Motor (직류 서보 전동기의 속응성 및 안정성 향상을 위한 개선된 뉴로-퍼지 제어기의 설계)

  • Kang, Young-Ho;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.6
    • /
    • pp.252-257
    • /
    • 2002
  • We designed a neuro-fuzzy controller to improve some problems that are happened when the DC servo motor is controlled by a PID controller or a fuzzy logic controller. Our model proposed in this paper has the stable and accurate responses, and shortened settling time. To prove the capability of the neuro-fuzzy controller designed in this paper, the proposed controller is applied to the speed control of DC servo motor. The results showed that the proposed controller did not produce the overshoot, which happens when PID controller is used, and also it did not produce the steady state error when FLC is used. And also, it reduced the settling time about 10%. In addition, we could by aware that our model was only about 60% of the value of current peak of PID controller.

Neuro-fuzzy Control for Balancing a Two-wheel Mobile Robot (이륜구동 이동로봇의 균형을 위한 뉴로 퍼지 제어)

  • Park, Young Jun;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • This paper presents the neuro-fuzzy control method for balancing a two-wheel mobile robot. A two-wheel mobile robot is built for the experimental studies. On-line learning algorithm based on the back-propagation(BP) method is derived for the Takagi-Sugeno(T-S) neuro-fuzzy controller. The modified error is proposed to learn the B-P algorithm for the balancing control of a two-wheel mobile robot. The T-S controller is implemented on a DSP chip. Experimental studies of the balancing control performance are conducted. Balancing control performances with disturbance are also conducted and results are evaluated.