• Title/Summary/Keyword: NeuroIS

Search Result 991, Processing Time 0.038 seconds

Semiactive Neuro-control for Seismically Excited Structure Considering Dynamics of MR Damper (지진하중을 받는 구조물의 MR 유체 감쇠기를 이용한 반능동 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.403-410
    • /
    • 2003
  • A new semiactive control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system adopts a clipped algorithm which induces the MR damper to generate approximately the desired force. The improved neuro - controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then by using the clipped algorithm the appropriate command voltage is selected in order to cause the MR damper to generate the desired control force. The simulation results show that the proposed semiactive neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semi-active control system using MR fluid dampers has many attractive features, such as the bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semi-active neuro-control strategy using MR fluid dampers could be effectively used for control of seismically excited structures.

  • PDF

Nonlinear Channel Equalization Using Adaptive Neuro-Fuzzy Fiter (적응 뉴로-퍼지 필터를 이용한 비선형 채널 등화)

  • 김승석;곽근창;김성수;전병석;유정웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.366-366
    • /
    • 2000
  • In this paper, an adaptive neuro-fuzzy filter using the conditional fuzzy c-means(CFCM) methods is proposed. Usualy, the number of fuzzy rules exponentially increases by applying the grid partitioning of the input space, in conventional adaptive neuro-fuzzy inference system(ANFIS) approaches. In order to solve this problem, CFCM method is adopted to render the clusters which represent the given input and output data. Parameter identification is performed by hybrid learning using back-propagation algorithm and total least square(TLS) method. Finally, we applied the proposed method to the nonlinear channel equalization problem and obtained a better performance than previous works.

  • PDF

Advance Neuro-Fuzzy Modeling Using a New Clustering Algorithm (새로운 클러스터링 알고리듬을 적용한 향상된 뉴로-퍼지 모델링)

  • 김승석;김성수;유정웅
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.7
    • /
    • pp.536-543
    • /
    • 2004
  • In this paper, we proposed a new method of modeling a neuro-fuzzy system using a hybrid clustering algorithm. The initial parameters and the number of clusters of the proposed system are optimally chosen simultaneously with respect to the process of regression, which is a unique characteristics of the proposed system. The proposed algorithm presented in this work improves the overall performance of the proposed a neuro-fuzzy system by choosing a proper number of clusters adaptively according the characteristics of given data. The process of clustering is performed by deciding on the number of classes, which yields the property of convergence of the system. In experiments, the superiority of the proposed neuro-fuzzy system is demonstrated, especially the process of optimizing parameters and clustering of learning speed.

Fuzzy-Neuro Controller for Control of Air-Conditioning System

  • Lee, Sang-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.33-42
    • /
    • 1995
  • A practical application of a fuzzy-neuro controller is described for an air-conditioning system. Air-handing units are being widely used for improving the performance of central air-conditioning systems. The fuzzy-neuro control system has two controlled variables, temperature and humidity and three control elements, cooling, heating, and humidification. In order to achieve high efficiency and economical contorl, especially in large offices and industrial buildings, two controllable parameters, temperature and humidity, must be adequately controlled by the three final controlling elements. In this paper a fuzzy-neuro control system is described for controlling air-conditioning systems efficiently and economically. Simulation results confirmed that the fuzzy neuro control system is effective for this multivariable system.

  • PDF

The Estimation of Link Travel Speed Using Hybrid Neuro-Fuzzy Networks (Hybrid Neuro-Fuzzy Network를 이용한 실시간 주행속도 추정)

  • Hwang, In-Shik;Lee, Hong-Chul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.4
    • /
    • pp.306-314
    • /
    • 2000
  • In this paper we present a new approach to estimate link travel speed based on the hybrid neuro-fuzzy network. It combines the fuzzy ART algorithm for structure learning and the backpropagation algorithm for parameter adaptation. At first, the fuzzy ART algorithm partitions the input/output space using the training data set in order to construct initial neuro-fuzzy inference network. After the initial network topology is completed, a backpropagation learning scheme is applied to optimize parameters of fuzzy membership functions. An initial neuro-fuzzy network can be applicable to any other link where the probe car data are available. This can be realized by the network adaptation and add/modify module. In the network adaptation module, a CBR(Case-Based Reasoning) approach is used. Various experiments show that proposed methodology has better performance for estimating link travel speed comparing to the existing method.

  • PDF

Semiactive Neuro-control for Seismically Excited Structure considering Dynamics of MR Damper (자기유변유체감쇠기의 동특성을 고려한 지진하중을 받는 구조물의 반능동 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.473-480
    • /
    • 2003
  • A new semiactive control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system adopts a clipped algorithm which induces the MR damper to generate approximately the desired force. The improved neuro-controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then by using the clipped algorithm the appropriate command voltage is selected in order to cause the MR damper to generate the desired control force. The simulation results show that the proposed semiactive neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semiactive control system using MR fluid dampers has many attractive features, such as bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semiactive neuro-control strategy using MR fluid dampers could be effective used for control seismically excited structures.

  • PDF

Neuro-Control of Seismically Excited Structures using Semi-active MR Fluid Damper (반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.313-320
    • /
    • 2002
  • A new semi-active control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system consists of the improved neuro-controller and the bang-bang-type controller. The improved neuro-controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then the bang-bang-type controller causes the MR fluid damper to generate the desired control force, so long as this force is dissipative. In numerical simulation, a three-story building structure is semi-actively controlled by the trained neural network under the historical earthquake records. The simulation results show that the proposed semi-active neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semi-active control system using MR fluid dampers has many attractive features, such as the bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semi-active neuro-control strategy using MR fluid dampers could be effectively used for control of seismically excited structures.

  • PDF

Retrospective Study of Facial Nerve Block for Facial Spasm (안면경련 환자에서 안면신경 차단의 추적조사)

  • Kim, Chan;Yang, Seung-Kon;Lee, Hyo-Keun;Lee, Hee-Jeon;Oh, Ji-Hyun;Noh, Won-Hwan;Kim, Seung-Hee
    • The Korean Journal of Pain
    • /
    • v.9 no.1
    • /
    • pp.89-93
    • /
    • 1996
  • Hemifacial spasm commonly occurs in muscles about the eye, but may also involve or spread to the entire side of the face. One hundred and seventy eight patients with hemifacial spasm visited our Neuro-Pain clinic from January 1992 to April 1996. There were 121 female and 57 male patients, a 2.1:1 ratio respectively. Largest percentages of patients were in the 50 year old range. Among them, 96 patients were treated by facial nerve block or O'Brien block. In most cases, induced facial palsy disappeared within one or two months. Among the 96 patients who received nerve block, 46 patients received a second block within 5 to 24 months. The average interval from first and second nerve block was 11.5 months. After nerve block, all patients were free from spasm for 1 to 21 months. We conclude that facial nerve block is a satisfactory and reliable method for the treatment of facial spasm.

  • PDF

A Development of Checklist for Applying Neuro Architecture Factors - Focused on Medical space (신경건축학적 요소 적용을 위한 체크리스트 개발 연구 - 의료공간을 중심으로)

  • Noh, Taerin;Suh, Swookyung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.26 no.2
    • /
    • pp.63-69
    • /
    • 2020
  • Purpose: The purpose of this study is to identify the neuro architecture items and detailed elements that can be considered for each detailed space in the future medical space design development through the development of a checklist of neuro architecture elements that can be utilized in medical space design. Methods:: This study first develops the neuro architecture element through theoretical research and prepares the basic plan for the checklist through consultation with the employees of the design company in which the researcher works. Finally, a checklist was developed through a survey of nine experts, including designers, hospital staff, and professors. Results: The result of this study 1) The neuro architecture component was developed in seven categories: light, color, sound, air, image, nature, ergonomic furniture and equipment. 2) Specifically, it consists of 49 elements including 7 light elements, 7 color elements, 5 sound elements, 4 air elements, 11 image elements, 6 elements in nature, 9 elements in ergonomic furniture and equipment. It was. 3) Although each of the detailed elements is more preferred according to the space, in general, all the elements should be considered in the context of the hospital space design. Implications: The checklist on the neuro architecture element will enable the development of the most faithful design as an efficient and useful tool for applying the neuro architecture philosophy that considers human beings in hospital design and pursues healing and happiness.

Structure Identification of a Neuro-Fuzzy Model Can Reduce Inconsistency of Its Rulebase

  • Wang, Bo-Hyeun;Cho, Hyun-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.276-283
    • /
    • 2007
  • It has been shown that the structure identification of a neuro-fuzzy model improves their accuracy performances in a various modeling problems. In this paper, we claim that the structure identification of a neuro-fuzzy model can also reduce the degree of inconsistency of its fuzzy rulebase. Thus, the resulting neuro-fuzzy model serves as more like a structured knowledge representation scheme. For this, we briefly review a structure identification method of a neuro-fuzzy model and propose a systematic method to measure inconsistency of a fuzzy rulebase. The proposed method is applied to problems or fuzzy system reproduction and nonlinear system modeling in order to validate our claim.