• 제목/요약/키워드: NeuroIS

검색결과 991건 처리시간 0.588초

Design of A Neuro-Fuzzy Controller for Speed Control Applied to AC Servo Motor (AC 서보 모터의 속도 제어를 위한 뉴로-퍼지 제어기 설계)

  • Ku, Ja-Yl;Kim, Sang-Hun
    • 전자공학회논문지 IE
    • /
    • 제47권3호
    • /
    • pp.26-34
    • /
    • 2010
  • In this study, a neuro-fuzzy controller based on the characteristics of fuzzy controlling and structure of artificial neural networks(ANN). This neuro-fuzzy controller has each advantage from fuzzy and ANN, respectively. Plus, it can handle their own shortcomings and parameters in the controller can be tuned by on-line. To verify the proposed controller, it has applied to the AC servo motor which is popular item in robot control field. General PID and fuzzy controller are also applied to the same motor so stability and good characteristic of the proposed controller are compared and proved. Especially, the experiment for variable load is investigated and performance result is proved also.

A Neuro-contouring controller for High-precision CNC Machine Tools (고정밀 CNC 머신을 위한 신경망 윤과제어)

  • 이현철;주정홍;전기준
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제7권5호
    • /
    • pp.1-7
    • /
    • 1997
  • In this paper, a neuro-contouring control scheme for the high precision machining of CNC machine tools is descrihed. The proposed control system consists of a conventional controller for each axis and an additional neuro-controller. For contouring control, the contour error must be computed during realtime motion, but generally the contour error for nonlinear contours is difficult to he directly computed. We, therefore, propose a new contour error model to approximate real error more exactly, and here we also introduce a cost function for better contouring performance and derive a learning law to adjust the weights of the neuro-controller. The derived learning law guarantees good contouring performance. Usefulness of the proposed control scheme is demonstrated hy computer simulations.

  • PDF

Design of Simple Neuro-controller for Global Transient Control and Voltage Regulation of Power Systems

  • Jalili-Kharaajoo Mahdi;Mohammadi-Milasi Rasoul
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권spc2호
    • /
    • pp.302-307
    • /
    • 2005
  • A novel neuro controller based simple neuro-structure with modified error function is introduced in this paper. This controller consists of two independent controllers, known as the voltage regulator and the angular controller. The voltage regulator is used to modify terminal voltage for the purpose of tracking a reference voltage. The angular controller is utilized to guarantee the stability of the system. In this structure each neuron uses a linear hard limit activation function that depends on the controlled variable and its derivatives. There is no need for parameter identification or any off-line training data. Two proposed controllers are merged by a smooth switch to build a complete controller. The effectiveness of the proposed novel control action is demonstrated through some computer simulations on a Single-Machine Infinite-Bus (SMIB) power system.

Design of Neuro-Fuzzy Controller for Velocity Control of DC Servo Motor with Variable Loads (가변부하를 갖는 직류 서보 전동기의 속도제어를 위한 뉴로-퍼지 제어기 설계)

  • Kim, Sang-Hoon;Kang, Young-Ho;Nam, Moon-Hyun;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.513-515
    • /
    • 1999
  • In this paper, Neuro-Fuzzy controller which has the characteristic of Fuzzy control and artificial Neural Network is designed A fuzzy rule to be applied is selected automatically by the allocated neurons. The neurons correspond to Fuzzy rules which are created by the expert. In order to adaptivity, the more precise modeling is implemented by error back propagation learning of adjusting the link-weight of fuzzy membership function in Neuro-fuzzy controller. The more classified fuzzy rule is used to include the property of Dual mode Method. To test the effectiveness of the algorithm designed above the experiment for DC servo motor with variable load as variable load plant is implementation.

  • PDF

Neuro-Fuzzy Approaches to Ozone Prediction System (뉴로-퍼지 기법에 의한 오존농도 예측모델)

  • 김태헌;김성신;김인택;이종범;김신도;김용국
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제10권6호
    • /
    • pp.616-628
    • /
    • 2000
  • In this paper, we present the modeling of the ozone prediction system using Neuro-Fuzzy approaches. The mechanism of ozone concentration is highly complex, nonlinear, and nonstationary, the modeling of ozone prediction system has many problems and the results of prediction is not a good performance so far. The Dynamic Polynomial Neural Network(DPNN) which employs a typical algorithm of GMDH(Group Method of Data Handling) is a useful method for data analysis, identification of nonlinear complex system, and prediction of a dynamical system. The structure of the final model is compact and the computation speed to produce an output is faster than other modeling methods. In addition to DPNN, this paper also includes a Fuzzy Logic Method for modeling of ozone prediction system. The results of each modeling method and the performance of ozone prediction are presented. The proposed method shows that the prediction to the ozone concentration based upon Neuro-Fuzzy approaches gives us a good performance for ozone prediction in high and low ozone concentration with the ability of superior data approximation and self organization.

  • PDF

Speed control of AC Servo Motor with Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 교류 서보 전동기의 속도제어)

  • Kim, Jong-Hyun;Kim, Sang-Hoon;Ko, Bong-Un;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2018-2020
    • /
    • 2001
  • In this study, a Neuro-Fuzzy Controller which has the characteristic of Fuzzy control and Artificial Neural Network is designed. A fuzzy rule to be applied is automatically selected by the allocated neurons. The neurons correspond to Fuzzy rules are created by an expert. To adapt the more precise modeling is implemented by error back propagation learning of adjusting the link-weight of fuzzy membership function in the Neuro-Fuzzy controller. The more classified fuzzy rule is used to include the property of dual mode method. In order to verify the effectiveness of an algorithm designed above, an operating characteristic of a AC servo motor is investigated.

  • PDF

Inference of RMR Value Using Fuzzy Set Theory and Neuro-Fuzzy Techniques (퍼지집합이론 및 뉴로-퍼지기법을 이용한 RMR 값의 추론)

  • 배규진;조만섭
    • Tunnel and Underground Space
    • /
    • 제11권4호
    • /
    • pp.289-300
    • /
    • 2001
  • In the design of tunnel, it contains inaccuracy of data, fuzziness of evaluation, observer error and so on. The face observation during tunnel excavation, therefore, plays an important role to raise stability and to reduce supporting cost. This study is carried out to minimize the subjectiveness of observer and to exactly evaluate the natural properties of ground during the face observation. For these purpose, fuzzy set theory and neuro-fuzzy techniques in artificial intelligent techniques are applied to the inference of the RMR value from the observation data. The correlation between original RMR vague and inferred RM $R_{_FU}$ and RM $R_{_NF}$ values from fuzzy set theory and neuro-fuzzy techniques is investigated using 46 data. The results show that good correlation between original RMR value and infected RM $R_{_FU}$ and RM $R_{_NF}$ value is observed when the correlation coefficients are |R|=0.96 and |R|=0.95 respectively. From these results, applicability of fuzzy set theory and neuro-fuzzy techniques to rock mats classification is proved to be sufficiently high enough. enough.

  • PDF

Neuro-Fuzzy Modeling based on Self-Organizing Clustering (자기구성 클러스터링 기반 뉴로-퍼지 모델링)

  • Kim Sung-Suk;Ryu Jeong-Woong;Kim Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • 제15권6호
    • /
    • pp.688-694
    • /
    • 2005
  • In this Paper, we Propose a new neuro-fuzzy modeling using clustering-based learning method. In the proposed clustering method, number of clusters is automatically inferred and its parameters are optimized simultaneously, Also, a neuro-fuzzy model is learned based on clustering information at same time. In the previous modelling method, clustering and model learning are performed independently and have no exchange of its informations. However, in the proposed method, overall neuro-fuzzy model is generated by using both clustering and model learning, and the information of modelling output is used to clustering of input. The proposed method improve the computational load of modeling using Subtractive clustering method. Simulation results show that the proposed method has an effectiveness compared with the previous methods.

Design of a Neuro-Euzzy Controller for Hydraulic Servo Systems (유압서보 시스템을 위한 뉴로-퍼지 제어기 설계)

  • 김천호;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제17권1호
    • /
    • pp.101-111
    • /
    • 1993
  • Many processes such as machining, injection-moulding and metal-forming are usually operated by hydraulic servo-systems. The dynamic characteristics of these systems are complex and highly non-linear and are often subjected to the uncertain external disturbances associated with the processes. Consequently, the conventional approach to the controller design for these systems may not guarantee accurate tracking control performance. An effective neuro-fuzzy controller is proposed to realize an accurate hydraulic servo-system regardless of the uncertainties and the external disturbances. For this purpose, first, we develop a simplified fuzzy logic controller which have multidimensional and unsymmetric membership functions. Secondly, we develop a neural network which consists of the parameters of the fuzzy logic controller. It is show that the neural network has both learning capability and linguistic representation capability. The proposed controller was implemented on a hydraulic servo-system. Feedback error learning architecture is adopted which uses the feedback error directly without passing through the dynamics or inverse transfer function of the hydraulic servo-system to train the neuro-fuzzy controller. A series of simulations was performed for the position-tracking control of the system subjected to external disturbances. The results of simulations show that regardless of inherent non-linearities and disturbances, an accuracy tracking-control performance is obtained using the proposed neuro-fuzzy controller.

Monthly Dam Inflow Forecasts by Using Weather Forecasting Information (기상예보정보를 활용한 월 댐유입량 예측)

  • Jeong, Dae-Myoung;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • 제37권6호
    • /
    • pp.449-460
    • /
    • 2004
  • The purpose of this study is to test the applicability of neuro-fuzzy system for monthly dam inflow forecasts by using weather forecasting information. The neuro-fuzzy algorithm adopted in this study is the ANFIS(Adaptive neuro-fuzzy Inference System) in which neural network theory is combined with fuzzy theory. The ANFIS model can experience the difficulties in selection of a control rule by a space partition because the number of control value increases rapidly as the number of fuzzy variable increases. In an effort to overcome this drawback, this study used the subtractive clustering which is one of fuzzy clustering methods. Also, this study proposed a method for converting qualitative weather forecasting information to quantitative one. ANFIS for monthly dam inflow forecasts was tested in cases of with or without weather forecasting information. It can be seen that the model performances obtained from the use of past observed data and future weather forecasting information are much better than those from past observed data only.