• Title/Summary/Keyword: NeuroIS

Search Result 987, Processing Time 0.028 seconds

A Comparison of Different Intelligent Control Techniques For a PM dc Motor

  • Amer S. I.;Salem M. M.
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • This paper presents the application of a simple neuro-based speed control scheme of a permanent magnet (PM) dc motor. To validate its efficiency, the performance characteristics of the proposed simple neuro-based scheme are compared with those of a Neural Network controller and those of a Fuzzy Logic controller under different operating conditions. The comparative results show that the simple neuro-based speed control scheme is robust, accurate and insensitive to load disturbances.

Training Algorithms of Neuro-fuzzy Systems Using Evolution Strategy (진화전략을 이용한 뉴로퍼지 시스템의 학습방법)

  • 정성훈
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.173-176
    • /
    • 2001
  • This paper proposes training algorithms of neuro-fuzzy systems. First, we introduce a structure training algorithm, which produces the necessary number of hidden nodes from training data. From this algorithm, initial fuzzy rules are also obtained. Second, the parameter training algorithm using evolution strategy is introduced. In order to show their usefulness, we apply our neuro-fuzzy system to a nonlinear system identification problem. It was found from experiments that proposed training algorithms works well.

  • PDF

Neuro-Fuzzy System and Its Application by Input Space Partition Methods (입력 공간 분할에 따른 뉴로-퍼지 시스템과 응용)

  • 곽근창;유정웅
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.433-439
    • /
    • 1998
  • In this paper, we present an approach to the structure identification based on the input space partition methods and to the parameter identification by hybrid learning method in neuro-fuzzy system. The structure identification can automatically estimate the number of membership function and fuzzy rule using grid partition, tree partition, scatter partition from numerical input-output data. And then the parameter identification is carried out by the hybrid learning scheme using back-propagation and least squares estimate. Finally, we sill show its usefulness for neuro-fuzzy modeling to truck backer-upper control.

  • PDF

PCA-based neuro-fuzzy model for system identification of smart structures

  • Mohammadzadeh, Soroush;Kim, Yeesock;Ahn, Jaehun
    • Smart Structures and Systems
    • /
    • v.15 no.4
    • /
    • pp.1139-1158
    • /
    • 2015
  • This paper proposes an efficient system identification method for modeling nonlinear behavior of civil structures. This method is developed by integrating three different methodologies: principal component analysis (PCA), artificial neural networks, and fuzzy logic theory, hence named PANFIS (PCA-based adaptive neuro-fuzzy inference system). To evaluate this model, a 3-story building equipped with a magnetorheological (MR) damper subjected to a variety of earthquakes is investigated. To train the input-output function of the PANFIS model, an artificial earthquake is generated that contains a variety of characteristics of recorded earthquakes. The trained model is also validated using the1940 El-Centro, Kobe, Northridge, and Hachinohe earthquakes. The adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. It is demonstrated from the training and validation processes that the proposed PANFIS model is effective in modeling complex behavior of the smart building. It is also shown that the proposed PANFIS produces similar performance with the benchmark ANFIS model with significant reduction of computational loads.

Maximum Torque Control of Induction Motor using Adaptive Learning Neuro Fuzzy Controller (적응학습 뉴로 퍼지제어기를 이용한 유도전동기의 최대 토크 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Kim, Do-Yeon;Jung, Byung-Jin;Kang, Sung-Joon;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.778_779
    • /
    • 2009
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. The paper is proposed maximum torque control of induction motor drive using adaptive learning neuro fuzzy controller and artificial neural network(ANN). The control method is applicable over the entire speed range and considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d, q axis current $_i_{ds}$, $i_{qs}$ for maximum torque operation is derived. The proposed control algorithm is applied to induction motor drive system controlled adaptive learning neuro fuzzy controller and ANN controller, the operating characteristics controlled by maximum torque control are examined in detail. Also, this paper is proposed the analysis results to verify the effectiveness of the adaptive learning neuro fuzzy controller and ANN controller.

  • PDF

Speed Control of AC Servo Motor with Loads Using Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 부하를 갖는 교류 서보 전동기의 속도제어)

  • Gang, Yeong-Ho;Kim, Nak-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.8
    • /
    • pp.352-359
    • /
    • 2002
  • A neuro-fuzzy controller has some problems that he difficulty of tuning up the membership function and fuzzy rules, long time of inferencing and defuzzifying compare to PID. Also, the fuzzy controller's own defect as a PD controller has. In this study, it is proposed two methods to solve these problems. The first method is that inner fuzzy rules are tuned up automatically by the back propagation learning according to error patterns. And the second method is a new type defuzzification method that shorten the calculation time of an inferencing and a defuzzifying. In this study, it is designed the new type neuro-fuzzy controller that improves the fast response and the stability of a system by using the proposed methods. And, the designed controller is named EPLNFC(Error pattern Learning Neuro-Fuzzy Controller). To evaluate the fast response and the stability of EPLNFC designed in this study, EPLNFC is applied to a speed control of a DC motor and AC motor.

Algorithm and Architecture of Hybrid Fuzzy Neural Networks (하이브리드 퍼지뉴럴네트워크의 알고리즘과 구조)

  • 박병준;오성권;김현기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.372-372
    • /
    • 2000
  • In this paper, we propose Neuro Fuzzy Polynomial Networks(NFPN) based on Polynomial Neural Network(PNN) and Neuro-Fuzzy(NF) for model identification of complex and nonlinear systems. The proposed NFPN is generated from the mutually combined structure of both NF and PNN. The one and the other are considered as the premise part and consequence part of NFPN structure respectively. As the premise part of NFPN, NF uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. As the consequence part of NFPN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. NFPN is available effectively for multi-input variables and high-order polynomial according to the combination of NF with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. In order to evaluate the performance of proposed models, we use the nonlinear function. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously.

  • PDF

Retrospective Study of Facial Nerve Block with O'Brien Method for Facial Spasm (안면경련 환자에서 O'Brien법을 이용한 안면신경 차단의 추적조사)

  • Kim, Chan;Kim, Sung-Mo;Lee, Hyo-Keun;Kim, Seung-Hie;Kim, Jeong-Ho;Kim, Boo-Seong
    • The Korean Journal of Pain
    • /
    • v.10 no.1
    • /
    • pp.16-20
    • /
    • 1997
  • Background : Hemifacial spasm commonly occurs on muscles about the eye, but may also involve or spread to the entire side of the face. There are many treatment for facial spasm, such as neuro-vascular decompression, local injection of Botulium toxin, facial nerve block at stylomastoid foramen, facial nerve block with O'Brien method. The present study was aimed to investigate the effects of facial nerve block with O'Brien method. Methods : Forty five patients with hemifacial spasm were treated by facial nerve block with O'Brien method from January 1996 to February 1997 We reviewed the charts, retrospectively. Results : Sex ratio was 1:1.7(17 male : 28 female patients). Most patients were 40~60 years old. Most patients well tolerated facial nerve block. Three patients failed to respond to the facial nerve block. We repeated the procedure within one week. Among the 45 patients who received nerve block, 35 received repeated block; 7 patients received second repeat block, 2 patients received third repeat block. After successful nerve block, all patients were free of spasm for 1 to 6 months. Average spasm-free period was 3.5 months. Conclusion : Although the spasm-free period was short, these results suggest facial nerve block with O'Brien method is a safe and comfortable method for treatment of facial spasm.

  • PDF

Synthesis and In vivo Evaluation of 5-Methoxy-2-(phenylethynyl)quinoline (MPEQ) and [11C]MPEQ Targeting Metabotropic Glutamate Receptor 5 (mGluR5)

  • Kim, Ji Young;Son, Myung-Hee;Choi, Kihang;Baek, Du-Jong;Ko, Min Kyung;Lim, Eun Jeong;Pae, Ae Nim;Keum, Gyochang;Lee, Jae Kyun;Cho, Yong Seo;Choo, Hyunah;Lee, Youn Woo;Moon, Byung Seok;Lee, Byung Cheol;Lee, Ho-Young;Min, Sun-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2304-2310
    • /
    • 2014
  • The synthesis and in vivo evaluation of 5-methoxy-2-(phenylethynyl)quinoline (MPEQ) 3 as a potential mGluR5 selective radioligand is described. We have identified MPEQ 3 exhibiting the analgesic effect in the neuropathic pain animal model. The effect of mGluR5 on neuronal activity in rat brain was evaluated through FDG/PET imaging in the presence of MPEQ 3. In addition, the PET study of [$^{11}C$]MPEQ 3 proved that accumulation of [$^{11}C$]MPEQ 3 in rat brain was correlated to the localization of the mGluR5.

Neuro-controller for a XY positioning table (XY 테이블의 신경망제어)

  • Jang, Jun Oh
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.375-382
    • /
    • 2004
  • This paper presents control designs using neural networks (NN) for a XY positioning table. The proposed neuro-controller is composed of an outer PD tracking loop for stabilization of the fast flexible-mode dynamics and an NN inner loop used to compensate for the system nonlinearities. A tuning algorithm is given for the NN weights, so that the NN compensation scheme becomes adaptive, guaranteeing small tracking errors and bounded weight estimates. Formal nonlinear stability proofs are given to show that the tracking error is small. The proposed neuro-controller is implemented and tested on an IBM PC-based XY positioning table, and is applicable to many precision XY tables. The algorithm, simulation, and experimental results are described. The experimental results are shown to be superior to those of conventional control.