• Title/Summary/Keyword: Neuro-image

Search Result 66, Processing Time 0.024 seconds

Intelligent Automatic Sorting System For Dried Oak Mushrooms

  • Lee, C.H.;Hwang, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.607-614
    • /
    • 1996
  • A computer vision based automatic intelligent sorting system for dried oak mushrooms has been developed. The developed system was composed of automatic devices for mushroom feeding and handling, two sets of computer vision system for grading , and computer with digital I/O board for PLC interface, and pneumatic actuators for the system control. Considering the efficiency of grading process and the real time on-line system implementation, grading was done sequentially at two consecutive independent stages using the captured image of either side. At the first stage, four grades of high quality categories were determined from the cap surface images and at the second stage 8 grades of medium and low quality categories were determined from the gill side images. The previously developed neuro-net based mushroom grading algorithm which allowed real time on-line processing was implemented and tested. Developed system revealed successful performance of sorting capability of approximate y 5, 000 mushrooms/hr per each line i.e. average 0.75 sec/mushroom with the grading accuracy of more than 88%.

  • PDF

Physiology of Eye Movements (안구 운동의 생리)

  • Kim, Ji Soo
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.2
    • /
    • pp.173-181
    • /
    • 1999
  • Eye movements serve vision by placing the image of an object on the fovea of each retina, and by preventing slippage of images on the retina. The brain employs two modes of ocular motor control, fast eye movements (saccades) and smooth eye movements. Saccades bring the fovea to a target, and smooth eye movements prevent retinal image slip. Smooth eye movements comprise smooth pursuit, the optokinetic reflex, the vestibulo-ocular reflex (VOR), vergence, and fixation. Saccades achieve rapid refixation of targets that fall on the extrafoveal retina by moving the eyes at peak velocities that can exceed $700^{\circ}/s$. Various brain lesions can affect saccadic latency, velocity, or accuracy. Smooth pursuit maintains fixation of a slowly moving target. The pursuit system responds to slippage of an image near the fovea in order to accelerate the eyes to a velocity that matches that of the target. When smooth eye movements velocity fails to match target velocity, catch-up saccades are used to compensate for limited smooth pursuit velocities. The VOR subserves vision by generating conjugate eye movements that are equal and opposite to head movements. If the VOR gain (the ratio of eye velocity to head velocity) is too high or too low, the target image is off the fovea, and head motion causes oscillopsia, an illusory to-and-fro movement of the environment.

  • PDF

Autonomous Optical Thinking Machine Dealing with Impression of Pictures

  • TAMANO, KazuHo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.423-425
    • /
    • 1998
  • An optical system which can autonomously form and display an impression of a picture made up by many figures has been developed. This system consists of optical fuzzy-neurons which calculate the correlation between the input picture and the reference image by incoherent optics. The calculated signal is applied to an amplifier whereby the output signal increases, then decreases according to increase of the input signal . These outputs are synthesized, and are used for changing the position where the system gaze on a part of the input picture by light beam. In this system, the light intensity used for gazing changes chaotically, The attractor drawn from the change of light intensity corresponds to the impression of the picture. This paper shows the results that are calculated by the numerical simulation. The system has been simulated to express the impression for a picture formed by 4figures.

  • PDF

Enhanced Fuzzy Single Layer Perceptron

  • Chae, Gyoo-Yong;Eom, Sang-Hee;Kim, Kwang-Baek
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.1
    • /
    • pp.36-39
    • /
    • 2004
  • In this paper, a method of improving the learning speed and convergence rate is proposed to exploit the advantages of artificial neural networks and neuro-fuzzy systems. This method is applied to the XOR problem, n bit parity problem, which is used as the benchmark in the field of pattern recognition. The method is also applied to the recognition of digital image for practical image application. As a result of experiment, it does not always guarantee convergence. However, the network showed considerable improvement in learning time and has a high convergence rate. The proposed network can be extended to any number of layers. When we consider only the case of the single layer, the networks had the capability of high speed during the learning process and rapid processing on huge images.

THE ELEVATION OF EFFICACY IDENTIFYING PITUITARY TISSUE ABNORMALITIES WITHIN BRAIN IMAGES BY EMPLOYING MEMORY CONTRAST LEARNING TECHNIQUES

  • S. SINDHU;N. VIJAYALAKSHMI
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.4
    • /
    • pp.931-943
    • /
    • 2024
  • Accurately identifying brain tumors is crucial for medical imaging's precise diagnosis and treatment planning. This study presents a novel approach that uses cutting-edge image processing techniques to automatically segment brain tumors. with the use of the Pyramid Network algorithm. This technique accurately and robustly delineates tumor borders in MRI images. Our strategy incorporates special algorithms that efficiently address problems such as tumor heterogeneity and size and shape fluctuations. An assessment using the RESECT Dataset confirms the validity and reliability of the method and yields promising results in terms of accuracy and computing efficiency. This method has a great deal of promise to help physicians accurately identify tumors and assess the efficacy of treatments, which could lead to higher standards of care in the field of neuro-oncology.

The Study about Improvement of Neuro Energy Decreased by Energy Saving (에너지절감에 의해 감소되는 뉴로에너지의 증강에 관한 연구)

  • Kim, Myung-Ho;Kang, Dong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.715-721
    • /
    • 2018
  • This study examined energy saving and elevating the worker's neuro energy (comfort, concentration, physical, and psychological stability) by compensating for the unpleasant tactile sensation to stimulate auditory and olfactory senses and reduce energy consumption. The experiment was conducted in an environment test room under the test conditions of temperature $25[^{\circ}C]$, relative humidity 50[RH%], illumination 1,000[lux] and air current speed 0.02[m/sec] by stimulating the auditory senses with a 1/f change in rhythm and the olfactory senses with an aroma scent. The experiment utilized the method of EEG, which evaluates human body's psychological status via tactile means, and the method of the vibra image, which evaluates the learning abilities, HRV and human body's psychological status via non-tactile means. The subjects were selected as eight university students (four males and four females) in their 20s, the type that have high relative ${\alpha}$(8~13[Hz]) activation in occipital lobe, which brings the highest level of mind stability and concentration, who had no difficulty in physical activities. The subjects' posture and physical activity was fixed to 1met - when the subjects are seated and relaxing in a comfortable environment - and their clothes condition was standardized as 0.7clo. As a result, the sentimental and psychological stability and concentration were the highest in the multisensory stimulation of jasmine scent and change rhythm of an a=1.106 sound source. In addition, under this condition, the relative $M{\alpha}$ and relative $M{\beta}$ increased by 70.49[%] and 89.72[%], respectively; the HRT decreased by 39.09[%]; and the fatigue and tension/anxiety decreased by 36.85[%] and 15.54[%], respectively.

Computer Vision and Neuro- Net Based Automatic Grading of a Mushroom(Lentinus Edodes L.) (컴퓨터시각과 신경회로망에 의한 표고등급의 자동판정)

  • Hwang, Heon;Lee, Choongho;Han, Joonhyun
    • Journal of Bio-Environment Control
    • /
    • v.3 no.1
    • /
    • pp.42-51
    • /
    • 1994
  • Visual features of a mushromm(Lentinus Edodes L.) are critical in sorting and grading as most agricultural products are. Because of its complex and various visual features, grading and sorting of mushrooms have been done manually by the human expert. Though actions involved in human grading look simple, it decision making underneath the simple action comes from the result of the complex neural processing of visual image. Recently, an artificial neural network has drawn a great attention because of its functional capability as a partial substitute of the human brain. Since most agricultural products are not uniquely defined in its physical properties and do not have a well defined job structure, the neuro -net based computer visual information processing is the promising approach toward the automation in the agricultural field. In this paper, first, the neuro - net based classification of simple geometric primitives were done and the generalization property of the network was tested for degraded primitives. And then the neuro-net based grading system was developed for a mushroom. A computer vision system was utilized for extracting and quantifying the qualitative visual features of sampled mushrooms. The extracted visual features of sampled mushrooms and their corresponding grades were used as input/output pairs for training the neural network. The grading performance of the trained network for the mushrooms graded previously by the expert were also presented.

  • PDF

A Neuro-Fuzzy Pedestrian Detection Method Using Convolutional Multiblock HOG (컨볼루션 멀티블럭 HOG를 이용한 퍼지신경망 보행자 검출 방법)

  • Myung, Kun-Woo;Qu, Le-Tao;Lim, Joon-Shik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1117-1122
    • /
    • 2017
  • Pedestrian detection is a very important and valuable part of artificial intelligence and computer vision. It can be used in various areas for example automatic drive, video analysis and others. Many works have been done for the pedestrian detection. The accuracy of pedestrian detection on multiple pedestrian image has reached high level. It is not easily get more progress now. This paper proposes a new structure based on the idea of HOG and convolutional filters to do the pedestrian detection in single pedestrian image. It can be a method to increase the accuracy depend on the high accuracy in single pedestrian detection. In this paper, we use Multiblock HOG and magnitude of the pixel as the feature and use convolutional filter to do the to extract the feature. And then use NEWFM to be the classifier for training and testing. We use single pedestrian image of the INRIA data set as the data set. The result shows that the Convolutional Multiblock HOG we proposed get better performance which is 0.015 miss rate at 10-4 false positive than the other detection methods for example HOGLBP which is 0.03 miss rate and ChnFtrs which is 0.075 miss rate.

Confocal Microscopy Image Segmentation and Extracting Structural Information for Morphological Change Analysis of Dendritic Spine (수상돌기 소극체의 형태변화 분석을 위한 공초점현미경 영상 분할 및 구조추출)

  • Son, Jeany;Kim, Min-Jeong;Kim, Myoung-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.167-174
    • /
    • 2008
  • The introduction of confocal microscopy makes it possible to observe the structural change of live neuronal cell. Neuro-degenerative disease, such as Alzheimer;s and Parkinson’s diseases are especially related to the morphological change of dendrite spine. That’s the reason for the study of segmentation and extraction from confocal microscope image. The difficulty comes from uneven intensity distribution and blurred boundary. Therefore, the image processing technique which can overcome these problems and extract the structural information should be suggested. In this paper, we propose robust structural information extracting technique with confocal microscopy images of dendrite in brain neurons. First, we apply the nonlinear diffusion filtering that enhance the boundary recognition. Second, we segment region of interest using iterative threshold selection. Third, we perform skeletonization based on Fast Marching Method that extracts centerline and boundary for analysing segmented structure. The result of the proposed method has been less sensitive to noise and has not been affected by rough boundary condition. Using this method shows more accurate and objective results.

  • PDF

An Analysis of Soil Moisture Using Satellite Image and Neuro-Fuzzy Model (위성영상과 퍼지-신경회로망 모형을 이용한 토양수분 분석)

  • Yu, Myung-Su;Choi, Chang-Won;Yi, Jae-Eung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.154-154
    • /
    • 2012
  • 지표에서의 토양수분은 작은 구성비를 가짐에도 불구하고 여러 수문 현상을 연계하는 매우 중요한 인자로써 최근 관련 연구가 활발하게 진행되고 있다. 토양수분은 침투나 침루를 통하여 강우와 지하수를 연결하는 기능을 함과 동시에 강우사상에 따른 유출특성에 직접적인 영향을 미치며 증발산을 통하여 에너지 순환을 연결하는 중요한 기능을 한다. 토양수분을 측정하는 방법에는 세타 탐침(Theta Probe), 장력계, TDR(Time Domain Reflectrometry) 등이 이용되고 있으며, 광역 토양수분자료의 보다 정확한 공간 변동성의 관측을 위하여 항공원격탐사와 인공위성 원격탐사기술이 개발되어 적용되고 있다. 인공위성 영상은 자료의 분석이 간편하며, 공간자료이므로 공간 변화를 분석하는 데 있어 매우 편리하다. 그 중 MODIS(Moderate Resolution Imaging Spectroradiometer) 위성영상은 저해상도 영상으로 극궤도 위성인 Terra와 Aqua 위성에 장착되어 있으며, NASA에서 필요한 정보를 받아 사용할 수 있다. 본 연구에서는 유역의 물리적 지형자료와 같은 방대한 양의 자료 수집 없이도, 모형이 구축되면 인공위성자료와 강우자료만으로도 신뢰성 높은 결과를 단시간 내에 효율적으로 산정할 수 있는 자료 지향형 모형인 ANFIS(Adaptive Neuro-Fuzzy Inference System)를 사용하였다. 사용된 퍼지변수로는 시험유역의 토양수분 관측자료와 강수량 및 인공위성 자료인 MODIS NDVI(Normalize Difference Vegetation Index), MODIS LST(Land-Surface Temperature) 영상을 이용하였다. MODIS NDVI는 시간 해상도 8일, 공간해상도 250 인 Level 3 영상이며, MODIS LST는 시간 해상도 1일, 공간해상도 1 km인 Level 3 영상을 사용하였다. 위성자료를 사용하기 위해 Korea TM 좌표체계로 변환한 뒤, 토양수분 관측지점이 속한 각 셀의 속성값을 추출하였다. 위성자료와 수집된 자료 및 토양수분자료와의 관계를 분석하기 위하여 입력자료를 다양한 방법으로 구성하여 입력 변수를 생성하였다. 생성된 입력 변수와 ANFIS 모형을 연계하여 각각의 토양수분 산정모형을 구축하고 대상지점에 대한 토양수분을 산정 및 비교 분석하였다.

  • PDF