• 제목/요약/키워드: Neuro-chip

검색결과 15건 처리시간 0.023초

비선형 시냅스를 갖는 확장 가능한 Analog Neuro-chip의 설계 (Design of Expandable Neuro-Chip with Nonlinear Synapses)

  • 박정배;최윤경;이수영
    • 전자공학회논문지B
    • /
    • 제31B권4호
    • /
    • pp.155-165
    • /
    • 1994
  • An analog neural network circuit of rhigh density integration is introduced. It's prototype chip is designed in 3 by 3 mm2 die. It uses only one MOSFET to implement a synapse. The number of synapses per neuron can be expanded by cascading several chips. The influence of nonlinearity in synapses is analyzed. A formalization of the back propagation which can be applied to this circuit is shown. Some simulation results are shown and disscussed.

  • PDF

확장 가능한 32X32 MBAM Neuro-chip의 설계 (Design of Expandable 32x32 MBAM Neuro-chip)

  • 최윤경;박정배;이수영
    • 전자공학회논문지B
    • /
    • 제30B권6호
    • /
    • pp.86-92
    • /
    • 1993
  • In this paper, we present a VLSI chip design of Multi-layer Bidirectionsl Associative Memory with good error-correction performance. The MBAM neural chip utilizes inner product implementation schems with binary storage and analog calculation.. Multi-layer can be constructed by direct cascading of these chips, and the number of neurons is expandable by parallel connection of these chips. We made proto-type chips and interface board to test the expansion. Currently the Chip has 32 input nodes, 32 output nodes, and can store up to 48 patterns, 32x48x2 SRAMs are included in the chip.

  • PDF

Neurons-on-a-Chip: In Vitro NeuroTools

  • Hong, Nari;Nam, Yoonkey
    • Molecules and Cells
    • /
    • 제45권2호
    • /
    • pp.76-83
    • /
    • 2022
  • Neurons-on-a-Chip technology has been developed to provide diverse in vitro neuro-tools to study neuritogenesis, synaptogensis, axon guidance, and network dynamics. The two core enabling technologies are soft-lithography and microelectrode array technology. Soft lithography technology made it possible to fabricate microstamps and microfluidic channel devices with a simple replica molding method in a biological laboratory and innovatively reduced the turn-around time from assay design to chip fabrication, facilitating various experimental designs. To control nerve cell behaviors at the single cell level via chemical cues, surface biofunctionalization methods and micropatterning techniques were developed. Microelectrode chip technology, which provides a functional readout by measuring the electrophysiological signals from individual neurons, has become a popular platform to investigate neural information processing in networks. Due to these key advances, it is possible to study the relationship between the network structure and functions, and they have opened a new era of neurobiology and will become standard tools in the near future.

An Integrated Approach of CNT Front-end Amplifier towards Spikes Monitoring for Neuro-prosthetic Diagnosis

  • Kumar, Sandeep;Kim, Byeong-Soo;Song, Hanjung
    • BioChip Journal
    • /
    • 제12권4호
    • /
    • pp.332-339
    • /
    • 2018
  • The future neuro-prosthetic devices would be required spikes data monitoring through sub-nanoscale transistors that enables to neuroscientists and clinicals for scalable, wireless and implantable applications. This research investigates the spikes monitoring through integrated CNT front-end amplifier for neuro-prosthetic diagnosis. The proposed carbon nanotube-based architecture consists of front-end amplifier (FEA), integrate fire neuron and pseudo resistor technique that observed high electrical performance through neural activity. A pseudo resistor technique ensures large input impedance for integrated FEA by compensating the input leakage current. While carbon nanotube based FEA provides low-voltage operation with directly impacts on the power consumption and also give detector size that demonstrates fidelity of the neural signals. The observed neural activity shows amplitude of spiking in terms of action potential up to $80{\mu}V$ while local field potentials up to 40 mV by using proposed architecture. This fully integrated architecture is implemented in Analog cadence virtuoso using design kit of CNT process. The fabricated chip consumes less power consumption of $2{\mu}W$ under the supply voltage of 0.7 V. The experimental and simulated results of the integrated FEA achieves $60G{\Omega}$ of input impedance and input referred noise of $8.5nv/{\sqrt{Hz}}$ over the wide bandwidth. Moreover, measured gain of the amplifier achieves 75 dB midband from range of 1 KHz to 35 KHz. The proposed research provides refreshing neural recording data through nanotube integrated circuit and which could be beneficial for the next generation neuroscientists.

TMS320C50칩을 이용한 로봇 매니퓰레이터의 적응-신경제어 (The Adaptive-Neuro Control of Robot Manipulator Based-on TMS320C50 Chip)

  • 이우송;김용태;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.305-311
    • /
    • 2003
  • We propose a new technique of adaptive-neuro controller design to implement real-time control of robot manipulator, Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of loaming a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique for real time control of robot system using DSPs(TMS320C50)

  • PDF

저온저장고의 뉴로-퍼지 제어시스템 개발 (Development of Neuro-Fuzzy System for Cold Storage Facility)

  • 양길모;고학균;홍지향
    • Journal of Biosystems Engineering
    • /
    • 제28권2호
    • /
    • pp.117-126
    • /
    • 2003
  • This study was conducted to develop precision control system fur cold storage facility that could offer safe storage environment for green grocery. For that reason of neuro-fuzzy control system with learning ability algorithm and single chip neuro-fuzzy micro controller was developed for cold storage facility. Dynamic characteristics and hunting of neuro-fuzzy control system were far superior to on-off and fuzzy control system. Dynamic characteristics of temperature were faster than on-off control system by 1,555 seconds(123% faster) and fuzzy control system by 460 seconds(36.4% faster). When system was arrived at steady state. hunting was ${\pm}$0.5$^{\circ}C$ in on-off control system, ${\pm}$0.4$^{\circ}C$ in fuzzy control system, and ${\pm}$0.3$^{\circ}C$ in neuro-fuzzy control system. Hunting of humidity and wind velocity was also controlled precisely by 70 to 72.5% and 1m/s For storage experiment with onion, characteristics of neuro-fuzzy control system were tested. Dynamic characteristics of neuro-fuzzy control system made cold storage facility conducted precooling ability and minimized hunting.

이륜구동 이동로봇의 균형을 위한 뉴로 퍼지 제어 (Neuro-fuzzy Control for Balancing a Two-wheel Mobile Robot)

  • 박영준;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.40-45
    • /
    • 2016
  • This paper presents the neuro-fuzzy control method for balancing a two-wheel mobile robot. A two-wheel mobile robot is built for the experimental studies. On-line learning algorithm based on the back-propagation(BP) method is derived for the Takagi-Sugeno(T-S) neuro-fuzzy controller. The modified error is proposed to learn the B-P algorithm for the balancing control of a two-wheel mobile robot. The T-S controller is implemented on a DSP chip. Experimental studies of the balancing control performance are conducted. Balancing control performances with disturbance are also conducted and results are evaluated.

DSP(TMS320C50) 칩을 사용한 산업용 로봇의 적응-신경제어기의 실현 (Implementation of the Adaptive-Neuro Controller of Industrial Robot Using DSP(TMS320C50) Chip)

  • 김용태;정동연;한성현
    • 한국공작기계학회논문집
    • /
    • 제10권2호
    • /
    • pp.38-47
    • /
    • 2001
  • In this paper, a new scheme of adaptive-neuro control system is presented to implement real-time control of robot manipulator using Digital Signal Processors. Digital signal processors, DSPs, are micro-processors that are particularly developed for fast numerical computations involving sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of therir prices. These features make DSPs a viable computational tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust perfor-mance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method.The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for the implementation of real-time control of robot system by the simulation and experi-ment.

  • PDF

TMS320C30칩을 사용한 산업용 로봇의 적응-신경제어기 설계 (The Adaptive-Neuro Controller Design of Industrial Robot Using TMS320C3X Chip)

  • 하석흥
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.162-169
    • /
    • 1999
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator using digital Signal Processors. Digital signal processors DSPs. are micro-processors that are particularly developed for variables. Digital version of most advanced control algorithms can be defined as sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of their prices. These features make DSPs a biable computatinal tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for implementation of real-time control of robot system by the simulation and experiment.

  • PDF

3 Stage 2 Switch Application for Transcranial Magnetic Stimulation

  • Ha, Dong-Ho;Kim, Whi-Young;Choi, Sun-Seob
    • Journal of Magnetics
    • /
    • 제16권3호
    • /
    • pp.234-239
    • /
    • 2011
  • Transcranial magnetic stimulation utilizes the method of controlling applied time and changing pulse by output pulse through power density control for diagnosis purposes. Transcranial magnetic stimulation can also be used in cases where diagnosis and treatment are difficult since output pulse shape can be changed. As intensity, pulse range, and pulse shape of the stimulation pulse must be changed according to lesion, the existing sine wave-shaped stimulation treatment pulse poses limitations in achieving various treatments and diagnosis. This study actualized a new method of transcranial magnetic stimulation that applies a 3 Stage 2 Switch( power semiconductor 2EA) for controlling pulse repetition rate by achieving numerous switching control of stimulation coil. Intensity, pulse range, and pulse shape of output can be freely changed to transform various treatment pulses in order to overcome limitations in stimulation treatment presented by the previous sine wave pulse shape. The method of freely changing pulse range by using 3 Stage 2 Switch discharge method is proposed. Pulse shape, composed of various pulse ranges, was created by grafting PFN (Pulsed Forming Network) through AVR AT80S8535 one-chip microprocessor technology, and application in transcranial magnetic stimulation was achieved to study the output characteristics of stimulation treatment pulse according to delaying time of the trigger signal applied in section switch.