• 제목/요약/키워드: Neuro control

검색결과 449건 처리시간 0.037초

CART 알고리즘과 하이브리드 학습을 통한 뉴로-퍼지 시스템과 응용 (Neuro-Fuzzy System and Its Application Using CART Algorithm and Hybrid Parameter Learning)

  • 오봉근;곽근창;유정웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 B
    • /
    • pp.578-580
    • /
    • 1998
  • The paper presents an approach to the structure identification based on the CART (Classification And Regression Tree) algorithm and to the parameter identification by hybrid learning method in neuro-fuzzy system. By using the CART algorithm, the proposed method can roughly estimate the numbers of membership function and fuzzy rule using the centers of decision regions. Then the parameter identification is carried out by the hybrid learning scheme using BP (Back-propagation) and RLSE (Recursive Least Square Estimation) from the numerical data. Finally, we will show it's usefulness for fuzzy modeling to truck backer upper control.

  • PDF

뉴로-퍼지 네트워크에 의한 유도전동기 궤적의 학습에 관한 연구 (A Study on the Learning Method for Induction Motor Trajectory using a Neuro-Fuzzy Networks)

  • 양승호;김세찬;김덕헌;유동욱;원충연
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.331-333
    • /
    • 1994
  • A learning method for induction motor trajectory using neuro-fuzzy networks (NFN) based on fusion of fuzzy logic theory and neural networks is proposed. The premise and consequent parameters of the NFN affecting the controllers performances are modified during the learning stages by the proposed learning method to implement an optimal controller only with pre-determined target trajectory and the least amount of knowledge about an induction motor. The induction motor position control system is simulated to verify the effectiveness of the learned NF controller(NFC). The simulation results shows that the proposed learning method has good dynamic performance and small steady state error.

  • PDF

능동형 임플란터블 디바이스 기술동향: BCI 응용 중심 (Active Implantable Device Technology Trend: BCI Application Focus)

  • 이성규;변춘원;김이경;박형일
    • 전자통신동향분석
    • /
    • 제32권6호
    • /
    • pp.27-39
    • /
    • 2017
  • A variety of medical devices are utilized to repair or help injured body functions after accidental injury(such as a traffic accident), population aging, or disease. Such medical devices are being actively researched and developed in portable form, skin patchable type, and further, implantable form. In the future, active implantable medical devices for neuro and brain sciences are expected to be developed. Active implantable medical devices that detect brain signals and control neurology for a wider understanding of human cognition and nerve functions, and for an understanding and treatment of various diseases, are being actively pursued for future use. In this paper, the core elements of implantable devices that can be applied to neuro and brain sciences are classified into electrode technologies for bio-signal acquisition and stimulation, analog/digital circuit technologies for signal processing, human body communication technologies, wireless power transmission technologies for continuous device use, and device integration technologies to integrate them. In each chapter, the latest technology development trends for each detailed technology field are reviewed.

Real-Time Implementation of On-Line Trained Neuro-Controller for a BLDC Motor

  • Salem, M.M.;Zahran, M.B.;Atia, Yousry;Zaki, A.M.
    • Journal of Power Electronics
    • /
    • 제3권1호
    • /
    • pp.10-16
    • /
    • 2003
  • Implementation and experimental verification of a simple neuro-controller (SNC) as a speed controller for a brush less DC (BLDC) motor is presented. The SNC with one weight and a linear hard limit activation function is trained on-line using the back propagation algorithm. A modified error function is used to ensure good performance during the on-line training, which has been used without previous off-line training. The SNC has been implemented using a computer-interface card mounted on a PC. The driving system performance has been investigated by a number of experimental tests for a variety of input reference speed trajectories.

적응형 소속함수를 가지는 퍼지 제어기 (Fuzzy Controller with Adaptive Membership Function)

  • 김봉재;방근태;박현태;유상욱;이현우;정원용;이수흠
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.813-816
    • /
    • 1995
  • The shape and width of fuzzy membership function has an effect on performance of fuzzy controller. In this paper, neuro-fuzzy controller is proposed to improve the control performance of fuzzy controller. It has membership function, that is adapt to plant constant by using trained neural network. This neural network has been trained with back propagation algorithm. To show the effectiveness of proposed neuro-fuzzy controller with adaptive membership function, it is applied to plant (dead time + 1st order) with various plant constant.

  • PDF

뉴로-퍼지 시스템을 이용한 CAL공정내 용접상태 진단 (Diagnosis for the Welding Condition of the CAL Process using Neuro-Fuzzy System)

  • 김경민;김이곤;박중조;송명현;정양희;배영철;최남섭
    • 한국정보통신학회논문지
    • /
    • 제4권4호
    • /
    • pp.885-893
    • /
    • 2000
  • The use of neural-fuzzy system to model mesh seam welding is described in this paper. Conventional, automated process generally involves sophisticated sensing and control techniques applied to various processing parameters. Welding parameters affecting quality include the arc voltage, the welding current, torch travel speed and the pressure and so on. The relationship between the welding parameters and weld quality is not a direct one, and in addition, the effect of the weld parameter variables are not independent of the each other. The effectiveness of the proposed neuro-fuzzy algorithms is demonstrated by computer simulations.

  • PDF

카오틱 신경망을 이용한 적응제어에 관한 연구 (A study on the Adaptive Neural Controller with Chaotic Neural Networks)

  • Sang Hee Kim;Won Woo Park;Hee Wook Ahn
    • 융합신호처리학회논문지
    • /
    • 제4권3호
    • /
    • pp.41-48
    • /
    • 2003
  • 본 논문은 개선된 카오틱 신경망을 이용한 비선형 시스템의 적응제어에 관한 것이다. 개선된 카오틱 신경망은 기존의 카오틱 신경망을 간략화하며 동적 특성을 강화하기 위하여 제안하였다 또한 새로운 동적 역전파 학습방법을 개발하였다. 제안된 신경회로망은 다변수 시스템의 시스템식별과 신경망 적응제어 시스템에 적용하였다. 제안된 신경망은 비선형 동적시스템에 우수한 적응성을 가지므로 시뮬레이션 결과는 우수한 성능을 보였다.

  • PDF

Neurons-on-a-Chip: In Vitro NeuroTools

  • Hong, Nari;Nam, Yoonkey
    • Molecules and Cells
    • /
    • 제45권2호
    • /
    • pp.76-83
    • /
    • 2022
  • Neurons-on-a-Chip technology has been developed to provide diverse in vitro neuro-tools to study neuritogenesis, synaptogensis, axon guidance, and network dynamics. The two core enabling technologies are soft-lithography and microelectrode array technology. Soft lithography technology made it possible to fabricate microstamps and microfluidic channel devices with a simple replica molding method in a biological laboratory and innovatively reduced the turn-around time from assay design to chip fabrication, facilitating various experimental designs. To control nerve cell behaviors at the single cell level via chemical cues, surface biofunctionalization methods and micropatterning techniques were developed. Microelectrode chip technology, which provides a functional readout by measuring the electrophysiological signals from individual neurons, has become a popular platform to investigate neural information processing in networks. Due to these key advances, it is possible to study the relationship between the network structure and functions, and they have opened a new era of neurobiology and will become standard tools in the near future.

Intelligent Automatic Sorting System For Dried Oak Mushrooms

  • Lee, C.H.;Hwang, H.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.607-614
    • /
    • 1996
  • A computer vision based automatic intelligent sorting system for dried oak mushrooms has been developed. The developed system was composed of automatic devices for mushroom feeding and handling, two sets of computer vision system for grading , and computer with digital I/O board for PLC interface, and pneumatic actuators for the system control. Considering the efficiency of grading process and the real time on-line system implementation, grading was done sequentially at two consecutive independent stages using the captured image of either side. At the first stage, four grades of high quality categories were determined from the cap surface images and at the second stage 8 grades of medium and low quality categories were determined from the gill side images. The previously developed neuro-net based mushroom grading algorithm which allowed real time on-line processing was implemented and tested. Developed system revealed successful performance of sorting capability of approximate y 5, 000 mushrooms/hr per each line i.e. average 0.75 sec/mushroom with the grading accuracy of more than 88%.

  • PDF

상대이득 행렬 기법을 이용한 신경망 제어기 설계에 관한 연구 (A Study on The Neural Network Controller using Relative Gain Matrix Technique)

  • 서호준;서삼준;김동식;박귀태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 B
    • /
    • pp.606-608
    • /
    • 1997
  • In this paper, Neuro-Fuzzy Controller(NFC), a fuzzy system realized using a neural network, is to adopt for the multivariable system. In the multivariable system, the interactive effects between the variables should be taken into account. A simple compensator, using the steady-state information can be obtained for open-loop stable systems, is presented to cope with this problem. However, it should be supposed that the plant is unknown to the control system designer, but an estimate of the DC gain has been obtained by carrying out experiments on the plant. Also, if the variables are not combinated completely, it is difficult to design the controller. Therefore, we design a neuro-fuzzy controller which controls a multivariable system with only input output informations, and compare its performance with that of a PI controller. In the proposed controller, the construction of the membership functions and rule base, which is highly heuristic, can be achieved using a training process. This allows the combination of knowledge of human experts and evidence from input-output data.

  • PDF