• Title/Summary/Keyword: Neuro control

Search Result 448, Processing Time 0.022 seconds

Semiactive Neuro-control for Seismically Excited Structure Considering Dynamics of MR Damper (지진하중을 받는 구조물의 MR 유체 감쇠기를 이용한 반능동 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.403-410
    • /
    • 2003
  • A new semiactive control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system adopts a clipped algorithm which induces the MR damper to generate approximately the desired force. The improved neuro - controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then by using the clipped algorithm the appropriate command voltage is selected in order to cause the MR damper to generate the desired control force. The simulation results show that the proposed semiactive neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semi-active control system using MR fluid dampers has many attractive features, such as the bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semi-active neuro-control strategy using MR fluid dampers could be effectively used for control of seismically excited structures.

  • PDF

The Robust Control of Robot Manipulator using Adaptive-Neuro Control Method (적응-뉴럴 제어 기법에 의한 로보트 매니퓰레이터의 견실 제어)

  • 차보남;한성현;이만형;김성권
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.262-266
    • /
    • 1995
  • This paper presents a new adaptive-neuro control scheme to control the velocity and position of SCARA robot with parameter uncertainties. The adaptive control of linear system found wiedly in many areas of control application. While techniques for the adaptive control of linear systems have been well-established in the literature, there are a few corresponding techniques for nonlinear systems. In this paper an attempt is made to present a newcontrol scheme for theadaptive control of ponlinear robot based on a feedforward neural network. The proposed approach incorporates a neuro controller used within a reinforcement learning framework, which reduces the problem to one of learning a stochastic approximation of an unknown average error surface Emphasis is focused on the fact that the adaptive-neuro controoler dose not need any input/output information about the controlled system. The simulation result illustrates the effectiveness of the proposed adaptive-neuro control scheme.

  • PDF

Semiactive Neuro-control for Seismically Excited Structure considering Dynamics of MR Damper (자기유변유체감쇠기의 동특성을 고려한 지진하중을 받는 구조물의 반능동 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.473-480
    • /
    • 2003
  • A new semiactive control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system adopts a clipped algorithm which induces the MR damper to generate approximately the desired force. The improved neuro-controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then by using the clipped algorithm the appropriate command voltage is selected in order to cause the MR damper to generate the desired control force. The simulation results show that the proposed semiactive neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semiactive control system using MR fluid dampers has many attractive features, such as bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semiactive neuro-control strategy using MR fluid dampers could be effective used for control seismically excited structures.

  • PDF

Indirect neuro-control of a bar load system (막대부하 시스템의 간접 신경망제어)

  • 장준호;전기준
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.1
    • /
    • pp.52-59
    • /
    • 1998
  • This paper represents identification and control designs using neural networks for a class of nonlinear dynamic systems. A proposed neuro-controller is a combination of a linear controller and a neural network, and is trained by indirect neuro-control scheme. The proposed neuro-controller is implemented and tested on an IBM PC-based bar system, and is applicable to many dc-motor-driven precisiion servo mechanisms. The ideas, algorithm, and experimental results are described. Experimental resutls are shown to be superior to those of conventional control.

  • PDF

Neuro-Control of Seismically Excited Structures using Semi-active MR Fluid Damper (반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.313-320
    • /
    • 2002
  • A new semi-active control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system consists of the improved neuro-controller and the bang-bang-type controller. The improved neuro-controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then the bang-bang-type controller causes the MR fluid damper to generate the desired control force, so long as this force is dissipative. In numerical simulation, a three-story building structure is semi-actively controlled by the trained neural network under the historical earthquake records. The simulation results show that the proposed semi-active neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semi-active control system using MR fluid dampers has many attractive features, such as the bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semi-active neuro-control strategy using MR fluid dampers could be effectively used for control of seismically excited structures.

  • PDF

뉴로-퍼지 제어 시스템과 그 응용

  • 권영섭
    • ICROS
    • /
    • v.1 no.3
    • /
    • pp.109-117
    • /
    • 1995
  • 이 글에서는 neuro-fuzzy control system에 관심을 가지신 control engineer들에게 다소나마 보탬이 되고자 neuro-fuzzy control system을 간단히 소개한 후 이 system이 실제로 어떻게 응용되고 있는지 살펴보고자 한다.

  • PDF

Adaptive Active Noise Control Using Neuro-Fuzzy Controller (뉴로-퍼지제어기를 이용한 적응 능동소음제어)

  • Kim, Jong-Woo;Kong, Seong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2879-2881
    • /
    • 1999
  • This paper presents the adaptive Active Noise Control(ANC) system using the Neuro-Fuzzy controller. In general, the character of noise is time-varing and nonlinear Thus controller must have the adaptivness so that applied in Active Noise Control system to cancel the noise. This paper propose the Neuro-Fuzzy controller trained with back-propagation teaming algorithm to optimize the parameters of controller The objects of this paper are cancel the noise, extract the original(speech) signal polluted by noise and design the Neuro-Fuzzy controller.

  • PDF

Fuzzy-Neuro Controller for Control of Air-Conditioning System

  • Lee, Sang-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.33-42
    • /
    • 1995
  • A practical application of a fuzzy-neuro controller is described for an air-conditioning system. Air-handing units are being widely used for improving the performance of central air-conditioning systems. The fuzzy-neuro control system has two controlled variables, temperature and humidity and three control elements, cooling, heating, and humidification. In order to achieve high efficiency and economical contorl, especially in large offices and industrial buildings, two controllable parameters, temperature and humidity, must be adequately controlled by the three final controlling elements. In this paper a fuzzy-neuro control system is described for controlling air-conditioning systems efficiently and economically. Simulation results confirmed that the fuzzy neuro control system is effective for this multivariable system.

  • PDF

Intelligent Control of Robot Manipulator Using DSPs(TMS320C80) (DSPs(TMS320C80)을 이용한 로봇 매니퓰레이터의 지능제어)

  • 이우송;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.219-226
    • /
    • 2003
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory fir the adaptive control of linear systems, there exists relatively little general theory fir the adaptive control of nonlinear systems. Adaptive control technique is essential fir providing a stable and robust performance fir application of robot control. The proposed neuro control algorithm is one of teaming a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique f3r real-time control of robot system using DSPs.

  • PDF

Robust Control of Robot Manipulator Based-on DSPs(TMS320C50) (DSPs(TMS320C50)을 이용한 로봇 매니퓰레이터의 견실제어)

  • 이우송;김종수;김홍래;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.193-200
    • /
    • 2004
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique for real-time control of robot system using DSPs.

  • PDF