• 제목/요약/키워드: Neuralnet

검색결과 3건 처리시간 0.021초

R의 neuralnet을 활용한 신경망분석 (Neural network analysis using neuralnet in R)

  • 백재욱
    • 산업진흥연구
    • /
    • 제6권1호
    • /
    • pp.1-7
    • /
    • 2021
  • 본 연구는 다층 퍼셉트론과 지도형 학습알고리즘에 대해 알아보았고, 아울러 neuralnet이라는 패키지를 사용하여 공변수들과 반응변수 간의 함수적 관계를 어떻게 모델링하는지 살펴보았다. 본 연구에서 적용된 알고리즘은 반응변수 값의 실제치와 예측치 간의 비교에 근거한 오차함수의 최소화를 위한 모수인 가중치들의 계속적인 조정을 특징으로 한다. 본 연구에서 설명하는 neuralnet 패키지는 활성화함수와 오차함수를 주어진 상황에 맞게 적절히 선택하고 나머지 매개변수들은 기본값으로 둘 수 있다. 본 연구에서 살펴본 불임 데이터에 대해 neuralnet 패키지를 활용한 결과 4개의 독립변수 중에서 age는 불임에 영향력이 거의 없음을 파악할 수 있었다. 아울러 신경망의 가중치는 -751.6부터 7.25에 이르기까지 다양한 값을 취하며, 첫 번째 은닉층의 절편은 -92.6과 7.25이며, 첫 번째 은닉뉴런으로 가는 공변수 age, parity, induced, spontaneous에 대한 가중치는 각각 3.17, -5.20, -36.82, -751.6임을 파악했다.

얼굴 특징점을 이용한 한국어 8모음 독화 시스템 구축 (Design & Implementation of Speechreading System using the Face Feature on the Korean 8 Vowels)

  • 김선옥;이경호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2008년도 제39차 동계학술발표논문집 16권2호
    • /
    • pp.135-140
    • /
    • 2009
  • 본 논문은 한국어 8 단모음을 인식하는 자동 독화 신경망 시스템을 구축한 것이다. 얼굴의 특정들은 휘도와 채도 성분으로 인하여 다양한 색 공간에서 다양한 표현 값을 갖는다. 이를 이용하여 각 표현 값들을 증폭하거나 축소, 대비시킴으로서 얼굴 특정들을 추출되게 하였다. 눈과 코, 안쪽 입의 외곽선, 이의 외곽선을 찾았고, 그 후 한국어 8모음 발화시 구분되게 변화는 값들을 파라미터로 설정하였다. 한국어 8모음을 발화하는 2400개의 자료를 모아 분석하고 이 분석을 바탕으로 신경망 시스템을 구축하여 실험하였다. 이 실험에 정상인 5명이 동원되었고, 사람들 사이에 있는 관찰 오차를 정규화를 통하여 수정하였다. 5명으로 분석하였고, 5명으로 인식 실험하여 좋은 결과를 얻었다.

  • PDF

신경망과 퍼지 패턴 추정기를 이용한 ATM의 호 수락 제어 (Call Admission Control in ATM by Neural Networks and Fuzzy Pattern Estimator)

  • 이진이
    • 한국정보처리학회논문지
    • /
    • 제6권8호
    • /
    • pp.2188-2195
    • /
    • 1999
  • 본 논문에서는 퍼지 패턴 추정기를 구성하여 신경망 학습시에 훈련되지 않은 새로운 종류의 호가 발생할 때, 재학습을 하지 않고 그 호의 수락/거절을 효과적으로 행할 수 있는 IFVQ-NNCA(Inverse Fuzzy Vectorquantizer-Neural Networks Call Admission Control)를 제안한다. 이 방식은 연결을 요구하는 호의 입력 트래픽 패턴이 발생하면, 그 입력패턴은 수락/거절 표준패턴(코드북), 퍼지 소속 함수값, 그리고 FCM(Fuzzy-C-Means) 연산을 이용하여 학습화한 패턴을 발생한 후, 그 패턴을 신경망의 입력으로 하여 호 수락/거절을 결정한다. 이 방식은 셀 스트림의 평균과 분산값을 트래픽 파라메터로 사용함으로써 트래픽 모델과는 무관한 호 수락제어가 가능하며, 입력패턴(프레임별 관측패턴)과 표준패턴의 멤버쉽 함수값을 CAC에 신고하는 트래픽 파라케터로 사용하는 새로운 방법이다. 신경망은 오류 역전파 알고리즘을 사용하여 표준패턴으로 학습한다. 시뮬레이션을 통하여 기존의 신경망 방식과 제안된 방식의 Fuzziness 값의 설정에 따른 호 수락/거절 오류를 비교하여 제안된 방식이 우수함을 보였다.

  • PDF